ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant elastic soft x-ray scattering in oxygen-ordered YBa_2Cu_3O_{6+delta}

162   0   0.0 ( 0 )
 نشر من قبل David Hawthorn
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Static charge-density wave (CDW) and spin-density wave (SDW) order has been convincingly observed in La-based cuprates for some time. However, more recently it has been suggested by quantum oscillation, transport and thermodynamic measurements that density wave order is generic to underdoped cuprates and plays a significant role in YBa_2Cu_3O_{6+delta} (YBCO). We use resonant soft x-ray scattering at the Cu L and O K edges to search for evidence of density wave order in Ortho-II and Ortho-VIII oxygen-ordered YBCO. We report a null result -- no evidence for static CDW order -- in both Ortho-II and Ortho-VIII ordered YBCO. While this does not rule out static CDW order in the CuO_2 planes of YBCO, these measurements place limits on the parameter space (temperature, magnetic field, scattering vector) in which static CDW order may exist. In addition, we present a detailed analysis of the energy and polarization dependence of the Ortho-II superstructure Bragg reflection [0.5 0 0] at the Cu L edge. The intensity of this peak, which is due to the valence modulations of Cu in the chain layer, is compared with calculations using atomic scattering form factors deduced from x-ray absorption measurements. The calculated energy and polarization dependence of the scattering intensity is shown to agree very well with the measurement, validating the approach and providing a framework for analyzing future resonant soft x-ray scattering measurements.



قيم البحث

اقرأ أيضاً

139 - A. J. Achkar , R. Sutarto , X. Mao 2012
Recently, charge density wave (CDW) order in the CuO$_2$ planes of underdoped YBa$_2$Cu$_3$O$_{6+delta}$ was detected using resonant soft x-ray scattering. An important question remains: is the chain layer responsible for this charge ordering? Here, we explore the energy and polarization dependence of the resonant scattering intensity in a detwinned sample of YBa$_2$Cu$_3$O$_{6.75}$ with ortho-III oxygen ordering in the chain layer. We show that the ortho-III CDW order in the chains is distinct from the CDW order in the planes. The ortho-III structure gives rise to a commensurate superlattice reflection at $Q$=[0.33 0 $L$] whose energy and polarization dependence agrees with expectations for oxygen ordering and a spatial modulation of the Cu valence in the chains. Incommensurate peaks at [0.30 0 $L$] and [0 0.30 $L$] from the CDW order in the planes are shown to be distinct in $Q$ as well as their temperature, energy, and polarization dependence, and are thus unrelated to the structure of the chain layer. Moreover, the energy dependence of the CDW order in the planes is shown to result from a spatial modulation of energies of the Cu 2$p$ to 3$d_{x^2-y^2}$ transition, similar to stripe-ordered 214 cuprates.
In underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders is under debate. Here we employ resonant x-ray scattering in stripe-ordered (La,M)_2CuO_4 to probe the relationship between electronic nematicity of the Cu 3d orbitals, structure of the (La,M)_2O_2 layers, and CDW order. We find distinct temperature dependences for the structure of the (La,M)_2O_2 layers and the electronic nematicity of the CuO_2 planes, with only the latter being enhanced by the onset of CDW order. These results identify electronic nematicity as an order parameter that is distinct from a purely structural order parameter in underdoped striped cuprates.
The discovery of superconductivity in a $d^{9-{delta}}$ nickelate has inspired disparate theoretical perspectives regarding the essential physics of this class of materials. A key issue is the magnitude of the magnetic superexchange, which relates to whether cuprate-like high-temperature nickelate superconductivity could be realized. We address this question using Ni L-edge and O K-edge spectroscopy of the reduced trilayer nickelate $d^{9-1/3}$ La4Ni3O8 and associated theoretical modeling. A magnon energy scale of ~80 meV resulting from a nearest-neighbor magnetic exchange of $J = 69(4)4$ meV is observed, proving that $d^{9-{delta}}$ nickelates can host a large superexchange. This value, along with that of the Ni-O hybridization estimated from our O K-edge data, implies that trilayer nickelates represent an intermediate case between the infinite-layer nickelates and the cuprates, and suggests that they represent a promising route towards higher-temperature nickelate superconductivity.
We report the results a comprehensive study of charge density wave (CDW) correlations in untwinned YBCO6+x single crystals with 0.4<x<0.99 using Cu-L3 edge resonant x-ray scattering (RXS). Evidence of CDW formation is found for 0.45<x<0.93, but not f or samples with x<0.44 that exhibit incommensurate spin-density-wave order, and in slightly overdoped samples with x=0.99. This suggests the presence of two proximate zero-temperature CDW critical points at doping pc1~0.08 and pc2~0.18. The CDW reflections are observed at incommensurate in-plane wave vectors (d_a, 0) and (0, d_b). Both decrease linearly with increasing doping, in agreement with recent reports on Bi-based high-Tc superconductors, but in sharp contrast to the behavior of the 214 family. The CDW intensity and correlation length exhibit maxima at p~0.12, coincident with a plateau in the superconducting transition temperature Tc. The onset temperature of the CDW reflections depends non-monotonically on p, with a maximum of~160 K for p~0.12. The RXS reflections exhibit a uniaxial intensity anisotropy. We further observe a depression of CDW correlations upon cooling below Tc, and (for samples with p> 0.09) an enhancement of the signal when an external magnetic field up to 6 T is applied in the superconducting state. For samples with p~0.08, where prior work has revealed a field-enhancement of incommensurate magnetic order, the RXS signal is field-independent. This supports a previously suggested scenario in which incommensurate charge and spin orders compete against each other, in addition to individually competing against. We discuss the relationship of these results to stripe order 214, the pseudogap phenomenon, superconducting fluctuations, and quantum oscillations.
253 - V. Baledent , D. Haug , Y. Sidis 2010
We report a polarized neutron scattering study of the orbital-like magnetic order in strongly underdoped ${rm YBa_2Cu_3O_{6.45}}$ and ${rm YBa_2(Cu_{0.98}Zn_{0.02})_3O_{6.6}}$. Their hole doping levels are located on both sides of the critical doping $p_{MI}$ of a metal-insulator transition inferred from transport measurements. Our study reveals a drop down of the orbital-like order slightly below $p_{MI}$ with a steep decrease of both the ordering temperature $T_{mag}$ and the ordered moment. Above $p_{MI}$, substitution of quantum impurities does not change $T_{mag}$, whereas it lowers significantly the bulk ordered moment. The modifications of the orbital-like magnetic order are interpreted in terms of a competition with electronic liquid crystal phases around $p_{MI}$. This competition gives rise to a mixed magnetic state in ${rm YBa_2Cu_3O_{6.45}}$ and a phase separation in ${rm YBa_2(Cu_{0.98}Zn_{0.02})_3O_{6.6}}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا