ﻻ يوجد ملخص باللغة العربية
The Euclidean $k$-center problem is a classical problem that has been extensively studied in computer science. Given a set $mathcal{G}$ of $n$ points in Euclidean space, the problem is to determine a set $mathcal{C}$ of $k$ centers (not necessarily part of $mathcal{G}$) such that the maximum distance between a point in $mathcal{G}$ and its nearest neighbor in $mathcal{C}$ is minimized. In this paper we study the corresponding $(k,ell)$-center problem for polygonal curves under the Frechet distance, that is, given a set $mathcal{G}$ of $n$ polygonal curves in $mathbb{R}^d$, each of complexity $m$, determine a set $mathcal{C}$ of $k$ polygonal curves in $mathbb{R}^d$, each of complexity $ell$, such that the maximum Frechet distance of a curve in $mathcal{G}$ to its closest curve in $mathcal{C}$ is minimized. In this paper, we substantially extend and improve the known approximation bounds for curves in dimension $2$ and higher. We show that, if $ell$ is part of the input, then there is no polynomial-time approximation scheme unless $mathsf{P}=mathsf{NP}$. Our constructions yield different bounds for one and two-dimensional curves and the discrete and continuous Frechet distance. In the case of the discrete Frechet distance on two-dimensional curves, we show hardness of approximation within a factor close to $2.598$. This result also holds when $k=1$, and the $mathsf{NP}$-hardness extends to the case that $ell=infty$, i.e., for the problem of computing the minimum-enclosing ball under the Frechet distance. Finally, we observe that a careful adaptation of Gonzalez algorithm in combination with a curve simplification yields a $3$-approximation in any dimension, provided that an optimal simplification can be computed exactly. We conclude that our approximation bounds are close to being tight.
In 2015, Driemel, Krivov{s}ija and Sohler introduced the $(k,ell)$-median problem for clustering polygonal curves under the Frechet distance. Given a set of input curves, the problem asks to find $k$ median curves of at most $ell$ vertices each that
textit{Clustering problems} often arise in the fields like data mining, machine learning etc. to group a collection of objects into similar groups with respect to a similarity (or dissimilarity) measure. Among the clustering problems, specifically te
We study two fundamental problems dealing with curves in the plane, namely, the nearest-neighbor problem and the center problem. Let $mathcal{C}$ be a set of $n$ polygonal curves, each of size $m$. In the nearest-neighbor problem, the goal is to cons
We consider the $k$-center problem in which the centers are constrained to lie on two lines. Given a set of $n$ weighted points in the plane, we want to locate up to $k$ centers on two parallel lines. We present an $O(nlog^2 n)$ time algorithm, which
We give a polynomial-time constant-factor approximation algorithm for maximum independent set for (axis-aligned) rectangles in the plane. Using a polynomial-time algorithm, the best approximation factor previously known is $O(loglog n)$. The results