ﻻ يوجد ملخص باللغة العربية
We study two fundamental problems dealing with curves in the plane, namely, the nearest-neighbor problem and the center problem. Let $mathcal{C}$ be a set of $n$ polygonal curves, each of size $m$. In the nearest-neighbor problem, the goal is to construct a compact data structure over $mathcal{C}$, such that, given a query curve $Q$, one can efficiently find the curve in $mathcal{C}$ closest to $Q$. In the center problem, the goal is to find a curve $Q$, such that the maximum distance between $Q$ and the curves in $mathcal{C}$ is minimized. We use the well-known discrete Frechet distance function, both under~$L_infty$ and under $L_2$, to measure the distance between two curves. For the nearest-neighbor problem, despite discouraging previous results, we identify two important cases for which it is possible to obtain practical bounds, even when $m$ and $n$ are large. In these cases, either $Q$ is a line segment or $mathcal{C}$ consists of line segments, and the bounds on the size of the data structure and query time are nearly linear in the size of the input and query curve, respectively. The returned answer is either exact under $L_infty$, or approximated to within a factor of $1+varepsilon$ under~$L_2$. We also consider the variants in which the location of the input curves is only fixed up to translation, and obtain similar bounds, under $L_infty$. As for the center problem, we study the case where the center is a line segment, i.e., we seek the line segment that represents the given set as well as possible. We present near-linear time exact algorithms under $L_infty$, even when the location of the input curves is only fixed up to translation. Under $L_2$, we present a roughly $O(n^2m^3)$-time exact algorithm.
In the $(1+varepsilon,r)$-approximate near-neighbor problem for curves (ANNC) under some distance measure $delta$, the goal is to construct a data structure for a given set $mathcal{C}$ of curves that supports approximate near-neighbor queries: Given
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore, which allows them to learn through explicitly memorizing the training datapoints. While effective, these models often require retriev
We show new applications of the nearest-neighbor chain algorithm, a technique that originated in agglomerative hierarchical clustering. We apply it to a diverse class of geometric problems: we construct the greedy multi-fragment tour for Euclidean TS
Previously in 2014, we proposed the Nearest Descent (ND) method, capable of generating an efficient Graph, called the in-tree (IT). Due to some beautiful and effective features, this IT structure proves well suited for data clustering. Although there
The use of summary statistics beyond the two-point correlation function to analyze the non-Gaussian clustering on small scales is an active field of research in cosmology. In this paper, we explore a set of new summary statistics -- the $k$-Nearest N