ﻻ يوجد ملخص باللغة العربية
There is no an exact solution to three-dimensional (3D) finite-size Ising model (referred to as the Ising model hereafter for simplicity) and even two-dimensional (2D) Ising model with non-zero external field to our knowledge. Here by using an elementary but rigorous method, we obtain an exact solution to the partition function of the Ising model with $N$ lattice sites. It is a sum of $2^N$ exponential functions and holds for $D$-dimensional ($D=1,2,3,...$) Ising model with or without the external field. This solution provides a new insight into the problem of the Ising model and the related difficulties, and new understanding of the classic exact solutions for one-dimensional (1D) (Kramers and Wannier, 1941) or 2D Ising model (Onsager, 1944). With this solution, the specific heat and magnetisation of a simple 3D Ising model are calculated, which are consistent with the results from experiments and/or numerical simulations. Furthermore, the solution here and the related approaches, can also be available to other models like the percolation and/or the Potts model.
We propose a method for generalizing the Ising model in magnetic fields and calculating the partition function (exact solution) for the Ising model of an arbitrary shape. Specifically, the partition function is calculated using matrices that are crea
An exact analytical diagonalization is used to solve the two dimensional Extended Hubbard Model for system with finite size. We have considered an Extended Hubbard Model (EHM) including on-site and off-site interactions with interaction energy U and
By using extended bosonic coherent states, a new technique to solve the Dicke model exactly is proposed in the numerical sense. The accessible system size is two orders of magnitude higher than that reported in literature. Finite-size scaling for sev
In 1944 Onsager published the formula for the partition function of the Ising model for the infinite square lattice. He was able to express the internal energy in terms of a special function, but he left the free energy as a definite integral. Seven
We consider an exactly solvable inhomogeneous Dicke model which describes an interaction between a disordered ensemble of two-level systems with single mode boson field. The existing method for evaluation of Richardson-Gaudin equations in the thermod