ﻻ يوجد ملخص باللغة العربية
We consider an exactly solvable inhomogeneous Dicke model which describes an interaction between a disordered ensemble of two-level systems with single mode boson field. The existing method for evaluation of Richardson-Gaudin equations in the thermodynamical limit is extended to the case of Bethe equations in Dicke model. Using this extension, we present expressions both for the ground state and lowest excited states energies as well as leading-order finite-size corrections to these quantities for an arbitrary distribution of individual spin energies. We then evaluate these quantities for an equally-spaced distribution (constant density of states). In particular, we study evolution of the spectral gap and other related quantities. We also reveal regions on the phase diagram, where finite-size corrections are of particular importance.
An exact analytical diagonalization is used to solve the two dimensional Extended Hubbard Model for system with finite size. We have considered an Extended Hubbard Model (EHM) including on-site and off-site interactions with interaction energy U and
By using extended bosonic coherent states, a new technique to solve the Dicke model exactly is proposed in the numerical sense. The accessible system size is two orders of magnitude higher than that reported in literature. Finite-size scaling for sev
We develop a scaling theory for the finite-size critical behavior of the microcanonical entropy (density of states) of a system with a critically-divergent heat capacity. The link between the microcanonical entropy and the canonical energy distributi
Corrections to scaling in the two-dimensional scalar phi^4 model are studied based on non-perturbative analytical arguments and Monte Carlo (MC) simulation data for different lattice sizes L (from 4 to 1536) and different values of the phi^4 coupling
The theory of finite-size scaling explains how the singular behavior of thermodynamic quantities in the critical point of a phase transition emerges when the size of the system becomes infinite. Usually, this theory is presented in a phenomenological