ترغب بنشر مسار تعليمي؟ اضغط هنا

An exact solution to the Extended Hubbard Model in 2D for finite size system

131   0   0.0 ( 0 )
 نشر من قبل Mohamed Bennai
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An exact analytical diagonalization is used to solve the two dimensional Extended Hubbard Model for system with finite size. We have considered an Extended Hubbard Model (EHM) including on-site and off-site interactions with interaction energy U and V respectively, for square lattice containing 4*4 sites at one-eighth filling with periodic boundary conditions, recently treated by Kovacs et al [1]. Taking into account the symmetry properties of this square lattice and using a translation linear operator, we have constructed a r-space basis, only, with 85 state-vectors which describe all possible distributions for four electrons in the 4*4 square lattice. The diagonalization of the 85*85 matrix energy allows us to study the local properties of the above system as function of the on-site and off-site interactions energies, where, we have shown that the off-site interaction encourages the existence of the double occupancies at the first exited state and induces supplementary conductivity of the system.



قيم البحث

اقرأ أيضاً

110 - Qiang Luo , jize Zhao , 2018
We derive several closed-form expressions for the fidelity susceptibility~(FS) of the anisotropic $XY$ model in the transverse field. The basic idea lies in a partial fraction expansion of the expression so that all the terms are related to a simple fraction or its derivative. The critical points of the model are reiterated by the FS, demonstrating its validity for characterizing the phase transitions. Moreover, the critical exponents $ u$ associated with the correlation length in both critical regions are successfully extracted by the standard finite-size scaling analysis.
We consider an exactly solvable inhomogeneous Dicke model which describes an interaction between a disordered ensemble of two-level systems with single mode boson field. The existing method for evaluation of Richardson-Gaudin equations in the thermod ynamical limit is extended to the case of Bethe equations in Dicke model. Using this extension, we present expressions both for the ground state and lowest excited states energies as well as leading-order finite-size corrections to these quantities for an arbitrary distribution of individual spin energies. We then evaluate these quantities for an equally-spaced distribution (constant density of states). In particular, we study evolution of the spectral gap and other related quantities. We also reveal regions on the phase diagram, where finite-size corrections are of particular importance.
133 - Rong Qiang Wei 2018
There is no an exact solution to three-dimensional (3D) finite-size Ising model (referred to as the Ising model hereafter for simplicity) and even two-dimensional (2D) Ising model with non-zero external field to our knowledge. Here by using an elemen tary but rigorous method, we obtain an exact solution to the partition function of the Ising model with $N$ lattice sites. It is a sum of $2^N$ exponential functions and holds for $D$-dimensional ($D=1,2,3,...$) Ising model with or without the external field. This solution provides a new insight into the problem of the Ising model and the related difficulties, and new understanding of the classic exact solutions for one-dimensional (1D) (Kramers and Wannier, 1941) or 2D Ising model (Onsager, 1944). With this solution, the specific heat and magnetisation of a simple 3D Ising model are calculated, which are consistent with the results from experiments and/or numerical simulations. Furthermore, the solution here and the related approaches, can also be available to other models like the percolation and/or the Potts model.
122 - Jerome Dubail 2009
The effect of surface exchange anisotropies is known to play a important role in magnetic critical and multicritical behavior at surfaces. We give an exact analysis of this problem in d=2 for the O(n) model by using Coulomb gas, conformal invariance and integrability techniques. We obtain the full set of critical exponents at the anisotropic special transition--where the symmetry on the boundary is broken down to O(n_1)xO(n-n_1)--as a function of n_1. We also obtain the full phase diagram and crossover exponents. Crucial in this analysis is a new solution of the boundary Yang-Baxter equations for loop models. The appearance of the generalization of Schramm-Loewner Evolution SLE_{kappa,rho} is also discussed.
We discuss the exact solution for the properties of the recently introduced ``necklace model for reptation. The solution gives the drift velocity, diffusion constant and renewal time for asymptotically long chains. Its properties are also related to a special case of the Rubinstein-Duke model in one dimension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا