ﻻ يوجد ملخص باللغة العربية
Graph randomisation is a crucial task in the analysis and synthesis of networks. It is typically implemented as an edge switching process (ESMC) repeatedly swapping the nodes of random edge pairs while maintaining the degrees involved. Curveball is a novel approach that instead considers the whole neighbourhoods of randomly drawn node pairs. Its Markov chain converges to a uniform distribution, and experiments suggest that it requires less steps than the established ESMC. Since trades however are more expensive, we study Curveballs practical runtime by introducing the first efficient Curveball algorithms: the I/O-efficient EM-CB for simple undirected graphs and its internal memory pendant IM-CB. Further, we investigate global trades processing every node in a graph during a single super step, and show that undirected global trades converge to a uniform distribution and perform superior in practice. We then discuss EM-GCB and EM-PGCB for global trades and give experimental evidence that EM-PGCB achieves the quality of the state-of-the-art ESMC algorithm EM-ES nearly one order of magnitude faster.
LFR is a popular benchmark graph generator used to evaluate community detection algorithms. We present EM-LFR, the first external memory algorithm able to generate massive complex networks following the LFR benchmark. Its most expensive component is
More and more massive parallel codes running on several hundreds of thousands of cores enter the computational science and engineering domain, allowing high-fidelity computations on up to trillions of unknowns for very detailed analyses of the underl
In this paper, we study the single-source shortest-path (SSSP) problem with positive edge weights, which is a notoriously hard problem in the parallel context. In practice, the $Delta$-stepping algorithm proposed by Meyer and Sanders has been widely
In this paper, we design parallel write-efficient geometric algorithms that perform asymptotically fewer writes than standard algorithms for the same problem. This is motivated by emerging non-volatile memory technologies with read performance being
As supercomputers continue to grow to exascale, the amount of data that needs to be saved or transmitted is exploding. To this end, many previous works have studied using error-bounded lossy compressors to reduce the data size and improve the I/O per