ﻻ يوجد ملخص باللغة العربية
LFR is a popular benchmark graph generator used to evaluate community detection algorithms. We present EM-LFR, the first external memory algorithm able to generate massive complex networks following the LFR benchmark. Its most expensive component is the generation of random graphs with prescribed degree sequences which can be divided into two steps: the graphs are first materialized deterministically using the Havel-Hakimi algorithm, and then randomized. Our main contributions are EM-HH and EM-ES, two I/O-efficient external memory algorithms for these two steps. We also propose EM-CM/ES, an alternative sampling scheme using the Configuration Model and rewiring steps to obtain a random simple graph. In an experimental evaluation we demonstrate their performance; our implementation is able to handle graphs with more than 37 billion edges on a single machine, is competitive with a massive parallel distributed algorithm, and is faster than a state-of-the-art internal memory implementation even on instances fitting in main memory. EM-LFRs implementation is capable of generating large graph instances orders of magnitude faster than the original implementation. We give evidence that both implementations yield graphs with matching properties by applying clustering algorithms to generated instances. Similarly, we analyse the evolution of graph properties as EM-ES is executed on networks obtained with EM-CM/ES and find that the alternative approach can accelerate the sampling process.
Graph randomisation is a crucial task in the analysis and synthesis of networks. It is typically implemented as an edge switching process (ESMC) repeatedly swapping the nodes of random edge pairs while maintaining the degrees involved. Curveball is a
We consider the problem of finding lower bounds on the I/O complexity of arbitrary computations in a two level memory hierarchy. Executions of complex computations can be formalized as an evaluation order over the underlying computation graph. Howeve
More and more massive parallel codes running on several hundreds of thousands of cores enter the computational science and engineering domain, allowing high-fidelity computations on up to trillions of unknowns for very detailed analyses of the underl
Self-stabilization is a versatile technique to withstand any transient fault in a distributed system. Mobile robots (or agents) are one of the emerging trends in distributed computing as they mimic autonomous biologic entities. The contribution of th
We investigate graph problems in the following setting: we are given a graph $G$ and we are required to solve a problem on $G^2$. While we focus mostly on exploring this theme in the distributed CONGEST model, we show new results and surprising conne