ﻻ يوجد ملخص باللغة العربية
In this paper, we design parallel write-efficient geometric algorithms that perform asymptotically fewer writes than standard algorithms for the same problem. This is motivated by emerging non-volatile memory technologies with read performance being close to that of random access memory but writes being significantly more expensive in terms of energy and latency. We design algorithms for planar Delaunay triangulation, $k$-d trees, and static and dynamic augmented trees. Our algorithms are designed in the recently introduced Asymmetric Nested-Parallel Model, which captures the parallel setting in which there is a small symmetric memory where reads and writes are unit cost as well as a large asymmetric memory where writes are $omega$ times more expensive than reads. In designing these algorithms, we introduce several techniques for obtaining write-efficiency, including DAG tracing, prefix doubling, reconstruction-based rebalancing and $alpha$-labeling, which we believe will be useful for designing other parallel write-efficient algorithms.
In this paper, we study the single-source shortest-path (SSSP) problem with positive edge weights, which is a notoriously hard problem in the parallel context. In practice, the $Delta$-stepping algorithm proposed by Meyer and Sanders has been widely
Hierarchical clustering is a fundamental task often used to discover meaningful structures in data, such as phylogenetic trees, taxonomies of concepts, subtypes of cancer, and cascades of particle decays in particle physics. Typically approximate alg
The data-driven computing paradigm initially introduced by Kirchdoerfer and Ortiz (2016) enables finite element computations in solid mechanics to be performed directly from material data sets, without an explicit material model. From a computational
Many algorithms use data structures that maintain properties of matrices undergoing some changes. The applications are wide-ranging and include for example matchings, shortest paths, linear programming, semi-definite programming, convex hull and volu
Over the past decade, there has been increasing interest in distributed/parallel algorithms for processing large-scale graphs. By now, we have quite fast algorithms -- usually sublogarithmic-time and often $poly(loglog n)$-time, or even faster -- for