ﻻ يوجد ملخص باللغة العربية
The linear stability with variable coefficients of the vortex sheets for the two-dimensional compressible elastic flows is studied. As in our earlier work on the linear stability with constant coefficients, the problem has a free boundary which is characteristic, and also the Kreiss-Lopatinskii condition is not uniformly satisfied. In addition, the roots of the Lopatinskii determinant of the para-linearized system may coincide with the poles of the system. Such a new collapsing phenomenon causes serious difficulties when applying the bicharacteristic extension method. Motivated by our method introduced in the constant-coefficient case, we perform an upper triangularization to the para-linearized system to separate the outgoing mode into a closed form where the outgoing mode only appears at the leading order. This procedure results in a gain of regularity for the outgoing mode which allows us to overcome the loss of regularity of the characteristic components at the poles, and hence to close all the energy estimates. We find that, analogous to the constant coefficient case, elasticity generates notable stabilization effects, and there are additional stable subsonic regions compared with the isentropic Euler flows. Moreover, since our method does not rely on the construction of the bicharacterisic curves, it can also be applied to other fluid models such as the non-isentropic Euler equations and the MHD equations.
We are concerned with the nonlinear stability of vortex sheets for the relativistic Euler equations in three-dimensional Minkowski spacetime. This is a nonlinear hyperbolic problem with a characteristic free boundary. In this paper, we introduce a ne
We investigate a steady planar flow of an ideal fluid in a (bounded or unbounded) domain $Omegasubset mathbb{R}^2$. Let $kappa_i ot=0$, $i=1,ldots, m$, be $m$ arbitrary fixed constants. For any given non-degenerate critical point $mathbf{x}_0=(x_{0,1
We construct co-rotating and traveling vortex sheets for 2D incompressible Euler equation, which are supported on several small closed curves. These examples represent a new type of vortex sheet solutions other than two known classes. The constructio
We consider 3D free-boundary compressible elastodynamic system under the Rayleigh-Taylor sign condition. It describes the motion of an isentropic inviscid elastic medium with moving boundary. The deformation tensor satisfies the neo-Hookean linear el
We study minimizers of a Gross-Pitaevskii energy describing a two-component Bose-Einstein condensate set into rotation. We consider the case of segregation of the components in the Thomas-Fermi regime, where a small parameter $epsilon$ conveys a sing