ترغب بنشر مسار تعليمي؟ اضغط هنا

Existence of stationary vortex sheets for the 2D Euler equation

79   0   0.0 ( 0 )
 نشر من قبل Guolin Qin
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a steady planar flow of an ideal fluid in a (bounded or unbounded) domain $Omegasubset mathbb{R}^2$. Let $kappa_i ot=0$, $i=1,ldots, m$, be $m$ arbitrary fixed constants. For any given non-degenerate critical point $mathbf{x}_0=(x_{0,1},ldots,x_{0,m})$ of the Kirchhoff-Routh function defined on $Omega^m$ corresponding to $(kappa_1,ldots, kappa_m)$, we construct a family of stationary planar flows with vortex sheets that have large vorticity amplitude and are perturbations of small circles centered near $x_i$, $i=1,ldots,m$. The proof is accomplished via the implicit function theorem with suitable choice of function spaces. This seems to be the first nontrivial result on the existence of stationary vortex sheets in domains.



قيم البحث

اقرأ أيضاً

We construct co-rotating and traveling vortex sheets for 2D incompressible Euler equation, which are supported on several small closed curves. These examples represent a new type of vortex sheet solutions other than two known classes. The constructio n is based on Birkhoff-Rott operator, and accomplished by using implicit function theorem at point vortex solutions with suitably chosen function spaces.
In this paper, we study desingularization of vortices for the two-dimensional incompressible Euler equations in the full plane. We construct a family of steady vortex pairs for the Euler equations with a general vorticity function, which constitutes a desingularization of a pair of point vortices with equal magnitude and opposite signs. The results are obtained by using an improved vorticity method.
In this paper, we construct new, uniformly-rotating solutions of the vortex sheet equation bifurcating from circles with constant vorticity amplitude. The proof is accomplished via a Lyapunov-Schmidt reduction and a second order expansion of the reduced system.
In this paper, we show that the only solution of the vortex sheet equation, either stationary or uniformly rotating with negative angular velocity $Omega$, such that it has positive vorticity and is concentrated in a finite disjoint union of smooth c urves with finite length is the trivial one: constant vorticity amplitude supported on a union of nested, concentric circles. The proof follows a desingularization argument and a calculus of variations flavor.
The linear stability with variable coefficients of the vortex sheets for the two-dimensional compressible elastic flows is studied. As in our earlier work on the linear stability with constant coefficients, the problem has a free boundary which is ch aracteristic, and also the Kreiss-Lopatinskii condition is not uniformly satisfied. In addition, the roots of the Lopatinskii determinant of the para-linearized system may coincide with the poles of the system. Such a new collapsing phenomenon causes serious difficulties when applying the bicharacteristic extension method. Motivated by our method introduced in the constant-coefficient case, we perform an upper triangularization to the para-linearized system to separate the outgoing mode into a closed form where the outgoing mode only appears at the leading order. This procedure results in a gain of regularity for the outgoing mode which allows us to overcome the loss of regularity of the characteristic components at the poles, and hence to close all the energy estimates. We find that, analogous to the constant coefficient case, elasticity generates notable stabilization effects, and there are additional stable subsonic regions compared with the isentropic Euler flows. Moreover, since our method does not rely on the construction of the bicharacterisic curves, it can also be applied to other fluid models such as the non-isentropic Euler equations and the MHD equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا