ﻻ يوجد ملخص باللغة العربية
We investigate a steady planar flow of an ideal fluid in a (bounded or unbounded) domain $Omegasubset mathbb{R}^2$. Let $kappa_i ot=0$, $i=1,ldots, m$, be $m$ arbitrary fixed constants. For any given non-degenerate critical point $mathbf{x}_0=(x_{0,1},ldots,x_{0,m})$ of the Kirchhoff-Routh function defined on $Omega^m$ corresponding to $(kappa_1,ldots, kappa_m)$, we construct a family of stationary planar flows with vortex sheets that have large vorticity amplitude and are perturbations of small circles centered near $x_i$, $i=1,ldots,m$. The proof is accomplished via the implicit function theorem with suitable choice of function spaces. This seems to be the first nontrivial result on the existence of stationary vortex sheets in domains.
We construct co-rotating and traveling vortex sheets for 2D incompressible Euler equation, which are supported on several small closed curves. These examples represent a new type of vortex sheet solutions other than two known classes. The constructio
In this paper, we study desingularization of vortices for the two-dimensional incompressible Euler equations in the full plane. We construct a family of steady vortex pairs for the Euler equations with a general vorticity function, which constitutes
In this paper, we construct new, uniformly-rotating solutions of the vortex sheet equation bifurcating from circles with constant vorticity amplitude. The proof is accomplished via a Lyapunov-Schmidt reduction and a second order expansion of the reduced system.
In this paper, we show that the only solution of the vortex sheet equation, either stationary or uniformly rotating with negative angular velocity $Omega$, such that it has positive vorticity and is concentrated in a finite disjoint union of smooth c
The linear stability with variable coefficients of the vortex sheets for the two-dimensional compressible elastic flows is studied. As in our earlier work on the linear stability with constant coefficients, the problem has a free boundary which is ch