ﻻ يوجد ملخص باللغة العربية
We are concerned with the nonlinear stability of vortex sheets for the relativistic Euler equations in three-dimensional Minkowski spacetime. This is a nonlinear hyperbolic problem with a characteristic free boundary. In this paper, we introduce a new symmetrization by choosing appropriate functions as primary unknowns. A necessary and sufficient condition for the weakly linear stability of relativistic vortex sheets is obtained by analyzing the roots of the Lopatinskiu{i} determinant associated to the constant coefficient linearized problem. Under this stability condition, we show that the variable coefficient linearized problem obeys an energy estimate with a loss of derivatives. The construction of certain weight functions plays a crucial role in absorbing error terms caused by microlocalization. Based on the weakly linear stability result, we establish the existence and nonlinear stability of relativistic vortex sheets under small initial perturbations by a Nash--Moser iteration scheme.
The linear stability with variable coefficients of the vortex sheets for the two-dimensional compressible elastic flows is studied. As in our earlier work on the linear stability with constant coefficients, the problem has a free boundary which is ch
We construct and study global solutions for the 3-dimensional incompressible MHD systems with arbitrary small viscosity. In particular, we provide a rigorous justification for the following dynamical phenomenon observed in many contexts: the solution
We study the nonlinear stability of the $(3+1)$-dimensional Minkowski spacetime as a solution of the Einstein vacuum equation. Similarly to our previous work on the stability of cosmological black holes, we construct the solution of the nonlinear ini
We investigate a steady planar flow of an ideal fluid in a (bounded or unbounded) domain $Omegasubset mathbb{R}^2$. Let $kappa_i ot=0$, $i=1,ldots, m$, be $m$ arbitrary fixed constants. For any given non-degenerate critical point $mathbf{x}_0=(x_{0,1
We study minimizers of a Gross-Pitaevskii energy describing a two-component Bose-Einstein condensate set into rotation. We consider the case of segregation of the components in the Thomas-Fermi regime, where a small parameter $epsilon$ conveys a sing