ﻻ يوجد ملخص باللغة العربية
In this paper we continue a study of cosmological perturbations in the conformal gravity theory. In previous work we had obtained a restricted set of solutions to the cosmological fluctuation equations, solutions that were required to be both transverse and synchronous. Here we present the general solution. We show that in a conformal invariant gravitational theory fluctuations around any background that is conformal to flat (backgrounds that include the cosmologically interesting Robertson-Walker and de Sitter geometries) can be constructed from the (known) solutions to fluctuations around a flat background. For this construction to hold it is not necessary that the perturbative geometry associated with the fluctuations itself be conformal to flat. Using this construction we show that in a conformal Robertson-Walker cosmology early universe fluctuations grow as $t^4$. We present the scalar, vector, tensor decomposition of the fluctuations in the conformal theory, and compare and contrast our work with the analogous treatment of fluctuations in the standard Einstein gravity theory.
We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metr
It is known that some cosmological perturbations are conformal invariant. This facilitates the studies of perturbations within some gravitational theories alternative to general relativity, for example the scalar-tensor theory, because it is possible
We investigate perturbations of a class of spherically symmetric solutions in massive gravity and bi-gravity. The background equations of motion for the particular class of solutions we are interested in reduce to a set of the Einstein equations with
We explain in detail the quantum-to-classical transition for the cosmological perturbations using only the standard rules of quantum mechanics: the Schrodinger equation and Borns rule applied to a subsystem. We show that the conditioned, i.e. intrins
We consider the gravitational radiation in conformal gravity theory. We perturb the metric from flat Mikowski space and obtain the wave equation after introducing the appropriate transformation for perturbation. We derive the effective energy-momentu