ﻻ يوجد ملخص باللغة العربية
The Ray--Knight theorems show that the local time processes of various path fragments derived from a one-dimensional Brownian motion $B$ are squared Bessel processes of dimensions $0$, $2$, and $4$. It is also known that for various singular perturbations $X= |B| + mu ell$ of a reflecting Brownian motion $|B|$ by a multiple $mu$ of its local time process $ell$ at $0$, corresponding local time processes of $X$ are squared Bessel with other real dimension parameters, both positive and negative. Here, we embed squared Bessel processes of all real dimensions directly in the local time process of $B$. This is done by decomposing the path of $B$ into its excursions above and below a family of continuous random levels determined by the Harrison--Shepp construction of skew Brownian motion as the strong solution of an SDE driven by $B$. This embedding connects to Brownian local times a framework of point processes of squared Bessel excursions of negative dimension and associated stable processes, recently introduced by Forman, Pal, Rizzolo and Winkel to set up interval partition evolutions that arise in their approach to the Aldous diffusion on a space of continuum trees.
In this paper we prove exact forms of large deviations for local times and intersection local times of fractional Brownian motions and Riemann-Liouville processes. We also show that a fractional Brownian motion and the related Riemann-Liouville proce
We consider a family of Bessel Processes that depend on the starting point $x$ and dimension $delta$, but are driven by the same Brownian motion. Our main result is that almost surely the first time a process hits $0$ is jointly continuous in $x$ and
Let $B^{alpha_i}$ be an $(N_i,d)$-fractional Brownian motion with Hurst index ${alpha_i}$ ($i=1,2$), and let $B^{alpha_1}$ and $B^{alpha_2}$ be independent. We prove that, if $frac{N_1}{alpha_1}+frac{N_2}{alpha_2}>d$, then the intersection local time
In this paper, we derive the joint Laplace transforms of occupation times until its last passage times as well as its positions. Motivated by Baurdoux [2], the last times before an independent exponential variable are studied. By applying dual argume
The L2-approximation of occupation and local times of a symmetric $alpha$-stable L{e}vy process from high frequency discrete time observations is studied. The standard Riemann sum estimators are shown to be asymptotically efficient when 0 < $alpha$ $