ﻻ يوجد ملخص باللغة العربية
In this paper we prove exact forms of large deviations for local times and intersection local times of fractional Brownian motions and Riemann-Liouville processes. We also show that a fractional Brownian motion and the related Riemann-Liouville process behave like constant multiples of each other with regard to large deviations for their local and intersection local times. As a consequence of our large deviation estimates, we derive laws of iterated logarithm for the corresponding local times. The key points of our methods: (1) logarithmic superadditivity of a normalized sequence of moments of exponentially randomized local time of a fractional Brownian motion; (2) logarithmic subadditivity of a normalized sequence of moments of exponentially randomized intersection local time of Riemann-Liouville processes; (3) comparison of local and intersection local times based on embedding of a part of a fractional Brownian motion into the reproducing kernel Hilbert space of the Riemann-Liouville process.
Let $B^{alpha_i}$ be an $(N_i,d)$-fractional Brownian motion with Hurst index ${alpha_i}$ ($i=1,2$), and let $B^{alpha_1}$ and $B^{alpha_2}$ be independent. We prove that, if $frac{N_1}{alpha_1}+frac{N_2}{alpha_2}>d$, then the intersection local time
We prove the existence of the intersection local time for two independent, d -dimensional fractional Brownian motions with the same Hurst parameter H. Assume d greater or equal to 2, then the intersection local time exists if and only if Hd<2.
The Ray--Knight theorems show that the local time processes of various path fragments derived from a one-dimensional Brownian motion $B$ are squared Bessel processes of dimensions $0$, $2$, and $4$. It is also known that for various singular perturba
In this paper we study several aspects of the growth of a supercritical Galton-Watson process {Z_n:nge1}, and bring out some criticality phenomena determined by the Schroder constant. We develop the local limit theory of Z_n, that is, the behavior of
The first-passage-time problem for a Brownian motion with alternating infinitesimal moments through a constant boundary is considered under the assumption that the time intervals between consecutive changes of these moments are described by an altern