ﻻ يوجد ملخص باللغة العربية
In this paper, we derive the joint Laplace transforms of occupation times until its last passage times as well as its positions. Motivated by Baurdoux [2], the last times before an independent exponential variable are studied. By applying dual arguments, explicit formulas are derived in terms of new analytical identities from Loeffen et al. [12].
Scale functions play a central role in the fluctuation theory of spectrally negative Levy processes and often appear in the context of martingale relations. These relations are often complicated to establish requiring excursion theory in favour of It
The time it takes the fastest searcher out of $Ngg1$ searchers to find a target determines the timescale of many physical, chemical, and biological processes. This time is called an extreme first passage time (FPT) and is typically much faster than t
The L2-approximation of occupation and local times of a symmetric $alpha$-stable L{e}vy process from high frequency discrete time observations is studied. The standard Riemann sum estimators are shown to be asymptotically efficient when 0 < $alpha$ $
We prove a large deviation principle and give an expression for the rate function, for the last passage time in a Bernoulli environment. The model is exactly solvable and its invariant version satisfies a Burke-type property. Finally, we compute expl
In this paper we prove a duality relation between coalescence times and exit points in last-passage percolation models with exponential weights. As a consequence, we get lower bounds for coalescence times with scaling exponent 3/2, and we relate its