ﻻ يوجد ملخص باللغة العربية
In this paper we introduce a notion of quantum Hamiltonian (co)action of Hopf algebras endowed with Drinfeld twist structure (resp., 2-cocycles). First, we define a classical Hamiltonian action in the setting of Poisson Lie groups compatible with the 2-cocycle stucture and we discuss a concrete example. This allows us to construct, out of the classical momentum map, a quantum momentum map in the setting of Hopf coactions and to quantize it by using Drinfeld approach.
We show that the associative algebra structure can be incorporated in the BRST quantization formalism for gauge theories such that extension from the corresponding Lie algebra to the associative algebra is achieved using operator quantization of redu
Fedosovs simple geometrical construction for deformation quantization of symplectic manifolds is generalized in three ways without introducing new variables: (1) The base manifold is allowed to be a supermanifold. (2) The star product does not have t
In a seminal paper Drinfeld explained how to associate to every classical r-matrix for a Lie algebra $lie g$ a twisting element based on $mathcal{U}(lie g)[[hbar]]$, or equivalently a left invariant star product of the corresponding symplectic struct
We present a superfield construction of Hamiltonian quantization with N=2 supersymmetry generated by two fermionic charges Q^a. As a byproduct of the analysis we also derive a classically localized path integral from two fermionic objects Sigma^a tha
We study the deformation complex of the dg wheeled properad of $mathbb{Z}$-graded quadratic Poisson structures and prove that it is quasi-isomorphic to the even M. Kontsevich graph complex. As a first application we show that the Grothendieck-Teichmu