ترغب بنشر مسار تعليمي؟ اضغط هنا

On deformation quantization of quadratic Poisson structures

157   0   0.0 ( 0 )
 نشر من قبل Sergei Merkulov
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the deformation complex of the dg wheeled properad of $mathbb{Z}$-graded quadratic Poisson structures and prove that it is quasi-isomorphic to the even M. Kontsevich graph complex. As a first application we show that the Grothendieck-Teichmuller group acts on the genus completion of that wheeled properad faithfully and essentially transitively. As a second application we classify all universal quantizations of $mathbb{Z}$-graded quadratic Poisson structures together with the underlying (so called) homogeneous formality maps.



قيم البحث

اقرأ أيضاً

It is known that Wolf constructed a lot of examples of Super Calabi-Yau twistor spaces. We would like to introduce super Poisson structures on them via super twistor double fibrations. Moreover we define the structure of deformation quantization for such super Poisson manifolds.
235 - Stefan Waldmann 2015
In this review an overview on some recent developments in deformation quantization is given. After a general historical overview we motivate the basic definitions of star products and their equivalences both from a mathematical and a physical point o f view. Then we focus on two topics: the Morita classification of star product algebras and convergence issues which lead to the nuclear Weyl algebra.
435 - Boris Shoikhet 2007
Let $alpha$ be a polynomial Poisson bivector on a finite-dimensional vector space $V$ over $mathbb{C}$. Then Kontsevich [K97] gives a formula for a quantization $fstar g$ of the algebra $S(V)^*$. We give a construction of an algebra with the PBW prop erty defined from $alpha$ by generators and relations. Namely, we define an algebra as the quotient of the free tensor algebra $T(V^*)$ by relations $x_iotimes x_j-x_jotimes x_i=R_{ij}(hbar)$ where $R_{ij}(hbar)in T(V^*)otimeshbar mathbb{C}[[hbar]]$, $R_{ij}=hbar Sym(alpha_{ij})+mathcal{O}(hbar^2)$, with one relation for each pair of $i,j=1...dim V$. We prove that the constructed algebra obeys the PBW property, and this is a generalization of the Poincar{e}-Birkhoff-Witt theorem. In the case of a linear Poisson structure we get the PBW theorem itself, and for a quadratic Poisson structure we get an object closely related to a quantum $R$-matrix on $V$. At the same time we get a free resolution of the deformed algebra (for an arbitrary $alpha$). The construction of this PBW algebra is rather simple, as well as the proof of the PBW property. The major efforts should be undertaken to prove the conjecture that in this way we get an algebra isomorphic to the Kontsevich star-algebra.
In this work various symbol spaces with values in a sequentially complete locally convex vector space are introduced and discussed. They are used to define vector-valued oscillatory integrals which allow to extend Rieffels strict deformation quantiza tion to the framework of sequentially complete locally convex algebras and modules with separately continuous products and module structures, making use of polynomially bounded actions of $mathbb{R}^n$. Several well-known integral formulas for star products are shown to fit into this general setting, and a new class of examples involving compactly supported $mathbb{R}^n$-actions on $mathbb{R}^n$ is constructed.
384 - Nima Moshayedi 2020
These are lecture notes for the course Poisson geometry and deformation quantization given by the author during the fall semester 2020 at the University of Zurich. The first chapter is an introduction to differential geometry, where we cover manifold s, tensor fields, integration on manifolds, Stokes theorem, de Rhams theorem and Frobenius theorem. The second chapter covers the most important notions of symplectic geometry such as Lagrangian submanifolds, Weinsteins tubular neighborhood theorem, Hamiltonian mechanics, moment maps and symplectic reduction. The third chapter gives an introduction to Poisson geometry where we also cover Courant structures, Dirac structures, the local splitting theorem, symplectic foliations and Poisson maps. The fourth chapter is about deformation quantization where we cover the Moyal product, $L_infty$-algebras, Kontsevichs formality theorem, Kontsevichs star product construction through graphs, the globalization approach to Kontsevichs star product and the operadic approach to formality. The fifth chapter is about the quantum field theoretic approach to Kontsevichs deformation quantization where we cover functional integral methods, the Moyal product as a path integral quantization, the Faddeev-Popov and BRST method for gauge theories, infinite-dimensional extensions, the Poisson sigma model, the construction of Kontsevichs star product through a perturbative expansion of the functional integral quantization for the Poisson sigma model for affine Poisson structures and the general construction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا