ﻻ يوجد ملخص باللغة العربية
In this paper, we apply machine learning methods to study phase transitions in certain statistical mechanical models on the two dimensional lattices, whose transitions involve non-local or topological properties, including site and bond percolations, the XY model and the generalized XY model. We find that using just one hidden layer in a fully-connected neural network, the percolation transition can be learned and the data collapse by using the average output layer gives correct estimate of the critical exponent $ u$. We also study the Berezinskii-Kosterlitz-Thouless transition, which involves binding and unbinding of topological defects---vortices and anti-vortices, in the classical XY model. The generalized XY model contains richer phases, such as the nematic phase, the paramagnetic and the quasi-long-range ferromagnetic phases, and we also apply machine learning method to it. We obtain a consistent phase diagram from the network trained with only data along the temperature axis at two particular parameter $Delta$ values, where $Delta$ is the relative weight of pure XY coupling. Besides using the spin configurations (either angles or spin components) as the input information in a convolutional neural network, we devise a feature engineering approach using the histograms of the spin orientations in order to train the network to learn the three phases in the generalized XY model and demonstrate that it indeed works. The trained network by using system size $Ltimes L$ can be used to the phase diagram for other sizes ($Ltimes L$, where $L e L$) without any further training.
We investigate dynamical quantum phase transitions in disordered quantum many-body models that can support many-body localized phases. Employing $l$-bits formalism, we lay out the conditions for which singularities indicative of the transitions appea
We demonstrate that a machine learning technique with a simple feedforward neural network can sensitively detect two successive phase transitions associated with the Berezinskii-Kosterlitz-Thouless (BKT) phase in q-state clock models simultaneously b
A wave function exposed to measurements undergoes pure state dynamics, with deterministic unitary and probabilistic measurement induced state updates, defining a quantum trajectory. For many-particle systems, the competition of these different elemen
The present paper considers some classical ferromagnetic lattice--gas models, consisting of particles that carry $n$--component spins ($n=2,3$) and associated with a $D$--dimensional lattice ($D=2,3$); each site can host one particle at most, thus im
Machine learning-inspired techniques have emerged as a new paradigm for analysis of phase transitions in quantum matter. In this work, we introduce a supervised learning algorithm for studying critical phenomena from measurement data, which is based