ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective Theory for the Measurement-Induced Phase Transition of Dirac Fermions

380   0   0.0 ( 0 )
 نشر من قبل Michael Buchhold
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A wave function exposed to measurements undergoes pure state dynamics, with deterministic unitary and probabilistic measurement induced state updates, defining a quantum trajectory. For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions. To access it despite the randomness of single quantum trajectories, we construct an $n$-replica Keldysh field theory for the ensemble average of the $n$-th moment of the trajectory projector. A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely, while $n-1$ others can be cast into the form of pure state evolutions generated by an effective non-Hermitian Hamiltonian. This decoupling is exact for free theories, and useful for interacting ones. In particular, we study locally measured Dirac fermions in $(1+1)$ dimensions, which can be bosonized to a monitored interacting Luttinger liquid at long wavelengths. For this model, the non-Hermitian Hamiltonian corresponds to a quantum Sine-Gordon model with complex coefficients. A renormalization group analysis reveals a gapless critical phase with logarithmic entanglement entropy growth, and a gapped area law phase, separated by a Berezinskii-Kosterlitz-Thouless transition. The physical picture emerging here is a pinning of the trajectory wave function into eigenstates of the measurement operators upon increasing the monitoring rate.



قيم البحث

اقرأ أيضاً

As in the preceding paper we aim at identifying the effective theory that describes the fluctuations of the local overlap with an equilibrium reference configuration close to a putative thermodynamic glass transition. We focus here on the case of fin ite-dimensional glass-forming systems, in particular supercooled liquids. The main difficulty for going beyond the mean-field treatment comes from the presence of diverging point-to-set spatial correlations. We introduce a variational low-temperature approximation scheme that allows us to account, at least in part, for the effect of these correlations. The outcome is an effective theory for the overlap fluctuations in terms of a random-field + random-bond Ising model with additional, power-law decaying, pair and multi-body interactions generated by the point-to-set correlations. This theory is much more tractable than the original problem. We check the robustness of the approximation scheme by applying it to a fully connected model already studied in the companion paper. We discuss the physical implications of this mapping for glass-forming liquids and the possibility it offers to determine the presence or not of a finite-temperature thermodynamic glass transition.
Using a new approximate strong-randomness renormalization group (RG), we study the many-body localized (MBL) phase and phase transition in one-dimensional quantum systems with short-range interactions and quenched disorder. Our RG is built on those o f Zhang $textit{et al.}$ [1] and Goremykina $textit{et al.}$ [2], which are based on thermal and insulating blocks. Our main addition is to characterize each insulating block with two lengths: a physical length, and an internal decay length $zeta$ for its effective interactions. In this approach, the MBL phase is governed by a RG fixed line that is parametrized by a global decay length $tilde{zeta}$, and the rare large thermal inclusions within the MBL phase have a fractal geometry. As the phase transition is approached from within the MBL phase, $tilde{zeta}$ approaches the finite critical value corresponding to the avalanche instability, and the fractal dimension of large thermal inclusions approaches zero. Our analysis is consistent with a Kosterlitz-Thouless-like RG flow, with no intermediate critical MBL phase.
In this paper, we apply machine learning methods to study phase transitions in certain statistical mechanical models on the two dimensional lattices, whose transitions involve non-local or topological properties, including site and bond percolations, the XY model and the generalized XY model. We find that using just one hidden layer in a fully-connected neural network, the percolation transition can be learned and the data collapse by using the average output layer gives correct estimate of the critical exponent $ u$. We also study the Berezinskii-Kosterlitz-Thouless transition, which involves binding and unbinding of topological defects---vortices and anti-vortices, in the classical XY model. The generalized XY model contains richer phases, such as the nematic phase, the paramagnetic and the quasi-long-range ferromagnetic phases, and we also apply machine learning method to it. We obtain a consistent phase diagram from the network trained with only data along the temperature axis at two particular parameter $Delta$ values, where $Delta$ is the relative weight of pure XY coupling. Besides using the spin configurations (either angles or spin components) as the input information in a convolutional neural network, we devise a feature engineering approach using the histograms of the spin orientations in order to train the network to learn the three phases in the generalized XY model and demonstrate that it indeed works. The trained network by using system size $Ltimes L$ can be used to the phase diagram for other sizes ($Ltimes L$, where $L e L$) without any further training.
We numerically investigate the structure of many-body wave functions of 1D random quantum circuits with local measurements employing the participation entropies. The leading term in system size dependence of participation entropies indicates a multif ractal scaling of the wave-functions at any non-zero measurement rate. The sub-leading term contains universal information about measurement--induced phase transitions and plays the role of an order parameter, being non-zero in the error-correcting phase and vanishing in the quantum Zeno phase. We provide an analytical interpretation of this behavior expressing the participation entropy in terms of partition functions of classical statistical models in 2D.
We show how a finite number of conservation laws can globally `shatter Hilbert space into exponentially many dynamically disconnected subsectors, leading to an unexpected dynamics with features reminiscent of both many body localization and quantum s cars. A crisp example of this phenomenon is provided by a `fractonic model of quantum dynamics constrained to conserve both charge and dipole moment. We show how the Hilbert space of the fractonic model dynamically fractures into disconnected emergent subsectors within a particular charge and dipole symmetry sector. This shattering can occur in arbitrary spatial dimensions. A large number of the emergent subsectors, exponentially many in system volume, have dimension one and exhibit strictly localized quantum dynamics---even in the absence of spatial disorder and in the presence of temporal noise. Other emergent subsectors display non-trivial dynamics and may be constructed by embedding finite sized non-trivial blocks into the localized subspace. While `fractonic models provide a particularly clean realization, the shattering phenomenon is more general, as we discuss. We also discuss how the key phenomena may be readily observed in near term ultracold atom experiments. In experimental realizations, the conservation laws are approximate rather than exact, so the localization only survives up to a prethermal timescale that we estimate. We comment on the implications of these results for recent predictions of Bloch/Stark many-body localization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا