ﻻ يوجد ملخص باللغة العربية
Machine learning-inspired techniques have emerged as a new paradigm for analysis of phase transitions in quantum matter. In this work, we introduce a supervised learning algorithm for studying critical phenomena from measurement data, which is based on iteratively training convolutional networks of increasing complexity, and test it on the transverse field Ising chain and q=6 Potts model. At the continuous Ising transition, we identify scaling behavior in the classification accuracy, from which we infer a characteristic classification length scale. It displays a power-law divergence at the critical point, with a scaling exponent that matches with the diverging correlation length. Our algorithm correctly identifies the thermodynamic phase of the system and extracts scaling behavior from projective measurements, independently of the basis in which the measurements are performed. Furthermore, we show the classification length scale is absent for the $q=6$ Potts model, which has a first order transition and thus lacks a divergent correlation length. The main intuition underlying our finding is that, for measurement patches of sizes smaller than the correlation length, the system appears to be at the critical point, and therefore the algorithm cannot identify the phase from which the data was drawn.
We numerically investigate the structure of many-body wave functions of 1D random quantum circuits with local measurements employing the participation entropies. The leading term in system size dependence of participation entropies indicates a multif
Machine learning has emerged as a promising approach to study the properties of many-body systems. Recently proposed as a tool to classify phases of matter, the approach relies on classical simulation methods$-$such as Monte Carlo$-$which are known t
We demonstrate that a machine learning technique with a simple feedforward neural network can sensitively detect two successive phase transitions associated with the Berezinskii-Kosterlitz-Thouless (BKT) phase in q-state clock models simultaneously b
A quantum many-body system whose dynamics includes local measurements at a nonzero rate can be in distinct dynamical phases, with differing entanglement properties. We introduce theoretical approaches to measurement-induced phase transitions (MPT) an
URh_2Ge_2 occupies an extraordinary position among the heavy-electron 122-compounds, by exhibiting a previously unidentified form of magnetic correlations at low temperatures, instead of the usual antiferromagnetism. Here we present new results of ac