ﻻ يوجد ملخص باللغة العربية
Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of $^{82}$Zr and $^{84}$Nb were measured for the first time with an uncertainty of $sim 10$ keV, and the masses of $^{79}$Y, $^{81}$Zr, and $^{83}$Nb were re-determined with a higher precision. %The latter differ significantly from their literature values. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low $alpha$ separation energies for neutron-deficient Mo and Tc isotopes, making the formation of Zr-Nb cycle in the $rp$-process unlikely. The new proton separation energy of $^{83}$Nb was determined to be 490(400)~keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the $p$-nucleus $^{84}$Sr relative to the neutron-deficient molybdenum isotopes in the previous $ u p$-process simulations.
Masses adjacent to the classical waiting-point nuclide 130Cd have been measured by using the Penning- trap spectrometer ISOLTRAP at ISOLDE/CERN. We find a significant deviation of over 400 keV from earlier values evaluated by using nuclear beta-decay
We report on the mass measurements of several neutron-rich $mathrm{Rb}$ and $mathrm{Sr}$ isotopes in the $A approx 100$ region with the TITAN Penning-trap mass spectrometer. Using highly charged ions in the charge state $q=10+$, the masses of $^{98,9
The astrophysical $s$-process is one of the two main processes forming elements heavier than iron. A key outstanding uncertainty surrounding $s$-process nucleosynthesis is the neutron flux generated by the ${}^{22}mathrm{Ne}(alpha, n){}^{25}mathrm{Mg
The location of electron capture heat sources in the crust of accreting neutron stars depends on the masses of extremely neutron-rich nuclei. We present first results from a new implementation of the time-of-flight technique to measure nuclear masses
The masses of very neutron-deficient nuclides close to the astrophysical rp- and nu p-process paths have been determined with the Penning trap facilities JYFLTRAP at JYFL/Jyvaskyla and SHIPTRAP at GSI/Darmstadt. Isotopes from yttrium (Z = 39) to pall