ﻻ يوجد ملخص باللغة العربية
The masses of very neutron-deficient nuclides close to the astrophysical rp- and nu p-process paths have been determined with the Penning trap facilities JYFLTRAP at JYFL/Jyvaskyla and SHIPTRAP at GSI/Darmstadt. Isotopes from yttrium (Z = 39) to palladium (Z = 46) have been produced in heavy-ion fusion-evaporation reactions. In total 21 nuclides were studied and almost half of the mass values were experimentally determined for the first time: 88Tc, 90-92Ru, 92-94Rh, and 94,95Pd. For the 95Pdm, (21/2^+) high-spin state, a first direct mass determination was performed. Relative mass uncertainties of typically $delta m / m = 5 times 10^{-8}$ were obtained. The impact of the new mass values has been studied in nu p-process nucleosynthesis calculations. The resulting reaction flow and the final abundances are compared to those obtained with the data of the Atomic Mass Evaluation 2003.
We report the mass measurement of $^{56}$Cu, using the LEBIT 9.4T Penning trap mass spectrometer at the National Superconducting Cyclotron Laboratory at Michigan State University. The mass of $^{56}$Cu is critical for constraining the reaction rates
The rare-earth peak in the $r$-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step elucidating the nuclear structure and reducing
The $^{23}$Al($p,gamma$)$^{24}$Si reaction is among the most important reactions driving the energy generation in Type-I X-ray bursts. However, the present reaction-rate uncertainty limits constraints on neutron star properties that can be achieved w
The low-lying energy levels of proton-rich $^{56}$Cu have been extracted using in-beam $gamma$-ray spectroscopy with the state-of-the-art $gamma$-ray tracking array GRETINA in conjunction with the S800 spectrograph at the National Superconducting Cyc
High-precision mass measurements on neutron-rich zinc isotopes 71m,72-81Zn have been performed with the Penning trap mass spectrometer ISOLTRAP. For the first time the mass of 81Zn has been experimentally determined. This makes 80Zn the first of the