ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-of-flight mass measurements for nuclear processes in neutron star crusts

108   0   0.0 ( 0 )
 نشر من قبل Alfredo Estrade
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The location of electron capture heat sources in the crust of accreting neutron stars depends on the masses of extremely neutron-rich nuclei. We present first results from a new implementation of the time-of-flight technique to measure nuclear masses of rare isotopes at the National Superconducting Cyclotron Laboratory. The masses of 16 neutron-rich nuclei in the scandium -- nickel range were determined simultaneously, improving the accuracy compared to previous data in 12 cases. The masses of $^{61}${V}, $^{63}${Cr}, $^{66}${Mn}, and $^{74}${Ni} were measured for the first time with mass excesses of $-30.510(890)$ MeV, $-35.280(650)$ MeV, $-36.900(790)$ MeV, and $-49.210(990)$ MeV, respectively. With the measurement of the $^{66}$Mn mass, the locations of the two dominant electron capture heat sources in the outer crust of accreting neutron stars that exhibit superbursts are now experimentally constrained. We find that the location of the $^{66}$Fe$rightarrow^{66}$Mn electron capture transition occurs significantly closer to the surface than previously assumed because our new experimental Q-value is 2.1 MeV (2.6$sigma$) smaller than predicted by the FRDM mass model.



قيم البحث

اقرأ أيضاً

We investigate the nuclear pasta phases in neutron star crusts by conducting a large number of three-dimensional Hartree-Fock+BCS calculations at densities leading to the crust-core transition. We survey the shape parameter space of pasta at constant pressure. Spaghetti, waffles, lasagna, bi-continuous phases and cylindrical holes occupy local minima in the resulting Gibbs energy surfaces. The bi-continuous phase, in which both the neutron gas and nuclear matter extend continuously in all dimensions and therefore protons are delocalized, appears over a large range of depths. Our results support the idea that nuclear pasta is a glassy system. Multiple pasta configurations coexist in a given layer of the crust. At a characteristic temperature, of order $10^8$-$10^9$K, different phases become frozen into domains whose sizes we estimate to be 1-50 times the lattice spacing and over which the local density and electron fraction can vary. Above this temperature, there is very little long-range order and matter is an amorphous solid. Electron scattering off domain boundaries may contribute to the disorder resistivity of the pasta phases. Annealing of the domains may occur during cooling; repopulating of local minima during crustal heating might lead to temperature dependent transport properties in the deep layers of the crust. We identify 4 distinct regions: (1) nuclear pasta first appears as a local minima, but spherical nuclei are the ground state; (2) nuclear pasta become the absolute minimum, but spherical nuclei are still a local minimum (3) only nuclear pasta appears in local minima, and protons are still localized in at least one dimension (4) only pasta appears, and protons are delocalized. The whole pasta region can occupy up to 70% of the crust by mass and 40% by thickness, and the layer in which protons are delocalized could occupy 45% of the crust mass and 25% of its thickness.
378 - Z. Meisel , S. George , S. Ahn 2016
We present the mass excesses of 59-64Cr, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The mass of 64Cr is determined for the first time, with an atomi c mass excess of -33.48(44) MeV. We find a significantly different two-neutron separation energy S2n trend for neutron-rich isotopes of chromium, removing the previously observed enhancement in binding at N=38. Additionally, we extend the S2n trend for chromium to N=40, revealing behavior consistent with the previously identified island of inversion in this region. We compare our results to state-of-the-art shell-model calculations performed with a modified Lenzi-Nowacki-Poves-Sieja interaction in the fp shell, including the g9/2 and d5/2 orbits for the neutron valence space. We employ our result for the mass of 64Cr in accreted neutron star crust network calculations and find a reduction in the strength and depth of electron-capture heating from the A=64 isobaric chain, resulting in a cooler than expected accreted neutron star crust. This reduced heating is found to be due to the >1-MeV reduction in binding for 64Cr with respect to values from commonly used global mass models.
389 - R. Lau , M. Beard , S. S. Gupta 2018
X-ray observations of transiently accreting neutron stars during quiescence provide information about the structure of neutron star crusts and the properties of dense matter. Interpretation of the observational data requires an understanding of the n uclear reactions that heat and cool the crust during accretion, and define its nonequilibrium composition. We identify here in detail the typical nuclear reaction sequences down to a depth in the inner crust where the mass density is 2E12 g/cm^3 using a full nuclear reaction network for a range of initial compositions. The reaction sequences differ substantially from previous work. We find a robust reduction of crust impurity at the transition to the inner crust regardless of initial composition, though shell effects can delay the formation of a pure crust somewhat to densities beyond 2E12 g/cm^3. This naturally explains the small inner crust impurity inferred from observations of a broad range of systems. The exception are initial compositions with A >= 102 nuclei, where the inner crust remains impure with an impurity parameter of Qimp~20 due to the N = 82 shell closure. In agreement with previous work we find that nuclear heating is relatively robust and independent of initial composition, while cooling via nuclear Urca cycles in the outer crust depends strongly on initial composition. This work forms a basis for future studies of the sensitivity of crust models to nuclear physics and provides profiles of composition for realistic crust models.
In the solid crusts of neutron stars, the advection of the magnetic field by the current-carrying electrons, an effect known as Hall drift, should play a very important role as the ions remain essentially fixed (as long as the solid does not break). Although Hall drift preserves the magnetic field energy, it has been argued that it may drive a turbulent cascade to scales at which Ohmic dissipation becomes effective, allowing a much faster decay in objects with very strong fields. On the other hand, it has been found that there are Hall equilibria, i.e., field configurations that are unaffected by Hall drift. Here, we address the crucial question of the stability of these equilibria through axially symmetric (2D) numerical simulations of Hall drift and Ohmic diffusion, with the simplifying assumption of uniform electron density and conductivity. We demonstrate the 2D-stability of a purely poloidal equilibrium, for which Ohmic dissipation makes the field evolve towards an attractor state through adjacent stable configurations, around which damped oscillations occur. For this field, the decay scales with the Ohmic timescale. We also study the case of an unstable equilibrium consisting of both poloidal and toroidal field components that are confined within the crust. This field evolves into a stable configuration, which undergoes damped oscillations superimposed on a slow evolution towards an attractor, just as the purely poloidal one.
Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of $^{82}$Zr and $^{84}$Nb were measured for the first time with an uncertainty of $sim 10$ keV, and the masses of $^{79}$Y, $^{81}$Zr, and $^{83}$Nb wer e re-determined with a higher precision. %The latter differ significantly from their literature values. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low $alpha$ separation energies for neutron-deficient Mo and Tc isotopes, making the formation of Zr-Nb cycle in the $rp$-process unlikely. The new proton separation energy of $^{83}$Nb was determined to be 490(400)~keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the $p$-nucleus $^{84}$Sr relative to the neutron-deficient molybdenum isotopes in the previous $ u p$-process simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا