ﻻ يوجد ملخص باللغة العربية
We investigate the universal dissipationless dynamics of Gaussian continuous-variable systems in the presence of a band-gapped bosonic environment. Our results show that environmental band gaps can induce localized modes, which give rise to the dissipationless dynamics where the system behaves as free oscillators instead of experiencing a full decay in the long time limit. We present a complete characterization of localized modes, and show the existence of the critical system-environment coupling. Beyond the critical values, localized modes can be produced and the system dynamics become dissipationless. This novel dynamics can be utilized to overcome the environmental noises and protect the quantum resources in the continuous-variable quantum information.
We establish the potential of continuous-variable Gaussian states of linear dynamical systems for machine learning tasks. Specifically, we consider reservoir computing, an efficient framework for online time series processing. As a reservoir we consi
We have recently shown that the output field in the Braunstein-Kimble protocol of teleportation is a superposition of two fields: the input one and a field created by Alices measurement and by displacement of the state at Bobs station by using the cl
We present universal continuous variable quantum computation (CVQC) in the micromaser. With a brief history as motivation we present the background theory and define universal CVQC. We then show how to generate a set of operations in the micromaser w
We study a class of mixed non-Gaussian entangled states that, whilst closely related to Gaussian entangled states, none-the-less exhibit distinct properties previously only associated with more exotic, pure non-Gaussian states.
Entanglement is one of the most fascinating features arising from quantum-mechanics and of great importance for quantum information science. Of particular interest are so-called hybrid-entangled states which have the intriguing property that they con