ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal Continuous Variable Quantum Computation in the Micromaser

210   0   0.0 ( 0 )
 نشر من قبل Mark Everitt
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present universal continuous variable quantum computation (CVQC) in the micromaser. With a brief history as motivation we present the background theory and define universal CVQC. We then show how to generate a set of operations in the micromaser which can be used to achieve universal CVQC. It then follows that the micromaser is a potential architecture for CVQC but our proof is easily adaptable to other potential physical systems.



قيم البحث

اقرأ أيضاً

We describe a generalization of the cluster-state model of quantum computation to continuous-variable systems, along with a proposal for an optical implementation using squeezed-light sources, linear optics, and homodyne detection. For universal quan tum computation, a nonlinear element is required. This can be satisfied by adding to the toolbox any single-mode non-Gaussian measurement, while the initial cluster state itself remains Gaussian. Homodyne detection alone suffices to perform an arbitrary multi-mode Gaussian transformation via the cluster state. We also propose an experiment to demonstrate cluster-based error reduction when implementing Gaussian operations.
We provide an explicit construction of a universal gate set for continuous-variable quantum computation with microwave circuits. Such a universal set has been first proposed in quantum-optical setups, but its experimental implementation has remained elusive in that domain due to the difficulties in engineering strong nonlinearities. Here, we show that a realistic three-wave mixing microwave architecture based on the SNAIL [Frattini et al., Appl. Phys. Lett. 110, 222603 (2017)] allows us to overcome this difficulty. As an application, we show that this architecture allows for the generation of a cubic phase state with an experimentally feasible procedure. This work highlights a practical advantage of microwave circuits with respect to optical systems for the purpose of engineering non-Gaussian states, and opens the quest for continuous-variable algorithms based on few repetitions of elementary gates from the continuous-variable universal set.
Although universal continuous-variable quantum computation cannot be achieved via linear optics (including squeezing), homodyne detection and feed-forward, inclusion of ideal photon counting measurements overcomes this obstacle. These measurements ar e sometimes described by arrays of beam splitters to distribute the photons across several modes. We show that such a scheme cannot be used to implement ideal photon counting and that such measurements necessarily involve nonlinear evolution. However, this requirement of nonlinearity can be moved off-line, thereby permitting universal continuous-variable quantum computation with linear optics.
Continuous variable measurement-based quantum computation on cluster states has in recent years shown great potential for scalable, universal, and fault-tolerant quantum computation when combined with the Gottesman-Kitaev-Preskill (GKP) code and quan tum error correction. However, no complete fault-tolerant architecture exists that includes everything from cluster state generation with finite squeezing to gate implementations with realistic noise and error correction. In this work, we propose a simple architecture for the preparation of a cluster state in three dimensions in which gates by gate teleportation can be efficiently implemented. To accommodate scalability, we propose architectures that allow for both spatial and temporal multiplexing, with the temporal encoded version requiring as little as two squeezed light sources. Due to its three-dimensional structure, the architecture supports topological qubit error correction, while GKP error correction is efficiently realized within the architecture by teleportation. To validate fault-tolerance, the architecture is simulated using surface-GKP codes, including noise from GKP-states as well as gate noise caused by finite squeezing in the cluster state. We find a fault-tolerant squeezing threshold of 12.7 dB with room for further improvement.
We investigate the universal dissipationless dynamics of Gaussian continuous-variable systems in the presence of a band-gapped bosonic environment. Our results show that environmental band gaps can induce localized modes, which give rise to the dissi pationless dynamics where the system behaves as free oscillators instead of experiencing a full decay in the long time limit. We present a complete characterization of localized modes, and show the existence of the critical system-environment coupling. Beyond the critical values, localized modes can be produced and the system dynamics become dissipationless. This novel dynamics can be utilized to overcome the environmental noises and protect the quantum resources in the continuous-variable quantum information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا