ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Gaussian continuous-variable teleportation

143   0   0.0 ( 0 )
 نشر من قبل Paulina Marian
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have recently shown that the output field in the Braunstein-Kimble protocol of teleportation is a superposition of two fields: the input one and a field created by Alices measurement and by displacement of the state at Bobs station by using the classical information provided by Alice. We study here the noise added by teleportation and compare its influence in the Gaussian and non-Gaussian settings.



قيم البحث

اقرأ أيضاً

We investigate continuous variable quantum teleportation using non-Gaussian states of the radiation field as entangled resources. We compare the performance of different classes of degaussified resources, including two-mode photon-added and two-mode photon-subtracted squeezed states. We then introduce a class of two-mode squeezed Bell-like states with one-parameter dependence for optimization. These states interpolate between and include as subcases different classes of degaussified resources. We show that optimized squeezed Bell-like resources yield a remarkable improvement in the fidelity of teleportation both for coherent and nonclassical input states. The investigation reveals that the optimal non-Gaussian resources for continuous variable teleportation are those that most closely realize the simultaneous maximization of the content of entanglement, the degree of affinity with the two-mode squeezed vacuum and the, suitably measured, amount of non-Gaussianity.
We investigate continuous variable (CV) quantum teleportation using relevant classes of non-Gaussian states of the radiation field as entangled resources. First, we introduce the class two-mode squeezed symmetric superposition of Fock states, includi ng finite truncations of twin-beam Gaussian states as special realizations. These states depend on a set of free independent parameters that can be adjusted for the optimization of teleportation protocols, with an enhancement of the success probability of teleportation both for coherent and Fock input states. We show that the optimization procedure reduces the entangled resources to truncated twin beam states, which thus represents an optimal class of non-Gaussian resources for quantum teleportation. We then introduce a further class of two-mode non-Gaussian entangled resources, in the form of squeezed cat-like states. We analyze the performance and the properties of such states when optimized for (CV) teleportation, and compare them to the optimized squeezed Bell-like states introduced in a previous work cite{CVTelepNoi}. We discuss how optimal resources for teleportation are characterized by a suitable balance of entanglement content and squeezed vacuum affinity. We finally investigate the effects of thermal noise on the efficiency of quantum teleportation. To this aim, a convenient framework is to describe noisy entangled resources as linear superpositions of non-Gaussian state and thermal states. Although the presence of the thermal component strongly reduces the teleportation fidelity, noisy non-Gaussian states remain preferred resources when compared to noisy twin-beam Gaussian states.
We study the continuous-variable (CV) quantum teleportation protocol in the case that one of the two modes of the shared entangled resource is sent to the receiver through a Gaussian Quantum Brownian Motion noisy channel. We show that if the channel is engineered in a non-Markovian regime, the information backflow from the environment induces an extra dependance of the phase of the two-mode squeezing of the shared Gaussian entangled resource on the transit time along the channel of the shared mode sent to the receiver. Optimizing over the non-Markovianity dependent phase of the squeezing yields a significant enhancement of the teleportation fidelity. For short enough channel transit times, essentially unit fidelity is achieved at realistic, finite values of the squeezing amplitude for a sufficiently large degree of the channel non-Markovianity.
We study a class of mixed non-Gaussian entangled states that, whilst closely related to Gaussian entangled states, none-the-less exhibit distinct properties previously only associated with more exotic, pure non-Gaussian states.
A novel quantum switch for continuous variables teleportation is proposed. Two pairs of EPR beams with identical frequency and constant phase relation are composed on two beamsplitters to produce two pairs of conditional entangled beams, two of which are sent to two sending stations(Alices) and others to two receiving stations(bobs). The EPR entanglement initionally results from two-mode quadrature squeezed state light. Converting the squeezed component of one of EPR sources between amplitude and phase, the input quantum state at a sender will be reproduced at two receivers in turn. The switching system manipulated by squeezed state light might be developed as a practical quantum switch device for the communication and teleportation of quantum information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا