ﻻ يوجد ملخص باللغة العربية
A $t$-$(n,d,lambda)$ design over ${mathbb F}_q$, or a subspace design, is a collection of $d$-dimensional subspaces of ${mathbb F}_q^n$, called blocks, with the property that every $t$-dimensional subspace of ${mathbb F}_q^n$ is contained in the same number $lambda$ of blocks. A collection of matrices in over ${mathbb F}_q$ is said to hold a subspace design if the set of column spaces of its elements forms the blocks of a subspace design. We use notions of puncturing and shortening of rank metric codes and the rank-metric MacWilliams identities to establish conditions under which the words of a given rank in a linear rank metric code hold a subspace design.
We investigate perfect codes in $mathbb{Z}^n$ under the $ell_p$ metric. Upper bounds for the packing radius $r$ of a linear perfect code, in terms of the metric parameter $p$ and the dimension $n$ are derived. For $p = 2$ and $n = 2, 3$, we determine
We define the rank-metric zeta function of a code as a generating function of its normalized $q$-binomial moments. We show that, as in the Hamming case, the zeta function gives a generating function for the weight enumerators of rank-metric codes. We
Optimal rank-metric codes in Ferrers diagrams can be used to construct good subspace codes. Such codes consist of matrices having zeros at certain fixed positions. This paper generalizes the known constructions for Ferrers diagram rank-metric (FDRM)
Four constructions for Ferrers diagram rank-metric (FDRM) codes are presented. The first one makes use of a characterization on generator matrices of a class of systematic maximum rank distance codes. By introducing restricted Gabidulin codes, the se
In this paper we study properties and invariants of matrix codes endowed with the rank metric, and relate them to the covering radius. We introduce new tools for the analysis of rank-metric codes, such as puncturing and shortening constructions. We g