ﻻ يوجد ملخص باللغة العربية
We use flat-space holography to calculate the mutual information and the 3-partite information of a two-dimensional BMS-invariant field theory (BMSFT$_2$). This theory is the putative holographic dual of the three-dimensional asymptotically flat spacetimes. We find a bound in which entangling transition occurs for zero and finite temperature BMSFTs. We also show that the holographic 3-partite information is always non-positive which indicates that the holographic mutual information is monogamous.
Holographic mutual and tripartite information have been studied in a non-conformal background. We have investigated how these observables behave as the energy scale and number of degrees of freedom vary. We have found out that the effect of degrees o
We study the time evolution of holographic mutual and tripartite information for a zero temperature $CFT$, derives to a non-relativistic thermal Lifshitz field theory by a quantum quench. We observe that the symmetry breaking does not play any role i
We derive the property of strong superadditivity of mutual information arising from the Markov property of the vacuum state in a conformal field theory and strong subadditivity of entanglement entropy. We show this inequality encodes unitarity bounds
The formalism of Holographic Space-time (HST) is a translation of the principles of Lorentzian geometry into the language of quantum information. Intervals along time-like trajectories, and their associated causal diamonds, completely characterize a
In this paper, we study how quantum correlation between subsystems changes in time by investigating time evolution of mutual information and logarithmic negativity in two protocols of mass quench. Hamiltonian in both protocols is for 2-dimensional fr