ﻻ يوجد ملخص باللغة العربية
We study the time evolution of holographic mutual and tripartite information for a zero temperature $CFT$, derives to a non-relativistic thermal Lifshitz field theory by a quantum quench. We observe that the symmetry breaking does not play any role in the phase space, phase of parameters of sub-systems, and the length of disentangling transition. Nevertheless, mutual and tripartite information indeed depend on the rate of symmetry breaking. We also find that for large enough values of $delta t$ the quantity $t_{eq}delta t^{-1}$, where $delta t$ and $t_{eq}$ are injection time and equilibration time respectively, behaves universally, $i.e.$ its value is independent of length of separation between sub-systems. We also show that tripartite information is always non-positive during the process indicates that mutual information is monogamous.
Holographic mutual and tripartite information have been studied in a non-conformal background. We have investigated how these observables behave as the energy scale and number of degrees of freedom vary. We have found out that the effect of degrees o
We show that the metastable, symmetry-breaking ground states of quantum many-body Hamiltonians have vanishing quantum mutual information between macroscopically separated regions, and are thus the most classical ones among all possible quantum ground
We use flat-space holography to calculate the mutual information and the 3-partite information of a two-dimensional BMS-invariant field theory (BMSFT$_2$). This theory is the putative holographic dual of the three-dimensional asymptotically flat spac
Since the work of Ryu and Takayanagi, deep connections between quantum entanglement and spacetime geometry have been revealed. The negative eigenvalues of the partial transpose of a bipartite density operator is a useful diagnostic of entanglement. I
We explore the far from equilibrium response of a holographic superfluid using the AdS/CFT correspondence. We establish the dynamical phase diagram corresponding to quantum quenches of the order parameter source field. We find three distinct regimes