ﻻ يوجد ملخص باللغة العربية
In this paper, we study how quantum correlation between subsystems changes in time by investigating time evolution of mutual information and logarithmic negativity in two protocols of mass quench. Hamiltonian in both protocols is for 2-dimensional free scalar theory with time-dependent mass: the mass in one case decreases monotonically and vanishes asymptotically (ECP), and that in the other decreases monotonically before t = 0, but increases monotonically afterward, and becomes constant asymptotically (CCP). We study the time evolution of the quantum correlations under those protocols in two different limits of the mass quench; fast limit and slow limit depending on the speed with which the mass is changed. We obtain the following two results: (1) For the ECP, we find that the time evolution of logarithmic negativity is, when the distance between the two subsystems is large enough, well-interpreted in terms of the propagation of relativistic particles created at a time determined by the limit of the quench we take. On the other hand, the evolution of mutual information in the ECP depends not only on the relativistic particles but also on slowly-moving particles. (2) For the CCP, both logarithmic negativity and mutual information oscillate in time after the quench. When the subsystems are well-separated, the oscillation of the quantum correlations in the fast limit is suppressed, and the time evolution looks similar to that under the ECP in the fast limit.
We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates
Ground states of interacting QFTs are non-gaussian states, i.e. their connected n-point correlation functions do not vanish for n>2, in contrast to the free QFT case. We show that when the ground state of an interacting QFT evolves under a free massi
We consider the mutual Renyi information I^n(A,B)=S^n_A+S^n_B-S^n_{AUB} of disjoint compact spatial regions A and B in the ground state of a d+1-dimensional conformal field theory (CFT), in the limit when the separation r between A and B is much grea
Understanding quantum entanglement in interacting higher-dimensional conformal field theories is a challenging task, as direct analytical calculations are often impossible to perform. With holographic entanglement entropy, calculations of entanglemen
Logarithmic representations of the conformal Galilean algebra (CGA) and the Exotic Conformal Galilean algebra ({sc ecga}) are constructed. This can be achieved by non-decomposable representations of the scaling dimensions or the rapidity indices, spe