ﻻ يوجد ملخص باللغة العربية
We introduce a new algebra associated with a hyperplane arrangement $mathcal{A}$, called the Solomon-Terao algebra $mbox{ST}(mathcal{A},eta)$, where $eta$ is a homogeneous polynomial. It is shown by Solomon and Terao that $mbox{ST}(mathcal{A},eta)$ is Artinian when $eta$ is generic. This algebra can be considered as a generalization of coinvariant algebras in the setting of hyperplane arrangements. The class of Solomon-Terao algebras contains cohomology rings of regular nilpotent Hessenberg varieties. We show that $mbox{ST}(mathcal{A},eta)$ is a complete intersection if and only if $mathcal{A}$ is free. We also give a factorization formula of the Hilbert polynomials when $mathcal{A}$ is free, and pose several related questions, problems and conjectures.
We study the combinatorics of hyperplane arrangements over arbitrary fields. Specifically, we determine in which situation an arrangement and its reduction modulo a prime number have isomorphic lattices via the use of minimal strong $sigma$-Grobner b
There is a trinity relationship between hyperplane arrangements, matroids and convex polytopes. We expand it as resolving the complexity issue expected by Mnevs universality theorem and conduct combinatorializing so the theory over fields becomes rea
We study the combinatorics of tropical hyperplane arrangements, and their relationship to (classical) hyperplane face monoids. We show that the refinement operation on the faces of a tropical hyperplane arrangement, introduced by Ardila and Develin i
We study the hyperplane arrangements associated, via the minimal model programme, to symplectic quotient singularities. We show that this hyperplane arrangement equals the arrangement of CM-hyperplanes coming from the representation theory of restric
We study the symmetric subquotient decomposition of the associated graded algebras $A^*$ of a non-homogeneous commutative Artinian Gorenstein (AG) algebra $A$. This decomposition arises from the stratification of $A^*$ by a sequence of ideals $A^*=C_