ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometry of Matroids and Hyperplane Arrangements

132   0   0.0 ( 0 )
 نشر من قبل Jaeho Shin
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Jaeho Shin




اسأل ChatGPT حول البحث

There is a trinity relationship between hyperplane arrangements, matroids and convex polytopes. We expand it as resolving the complexity issue expected by Mnevs universality theorem and conduct combinatorializing so the theory over fields becomes realization of our combinatorial theory. A main theorem is that for n less than or equal to 9 a specific and general enough kind of matroid tilings in the hypersimplex Delta(3,n) extend to matroid subdivisions of Delta(3,n) with the bound n=9 sharp. As a straightforward application to realizable cases, we solve an open problem in algebraic geometry proposed in 2008.



قيم البحث

اقرأ أيضاً

We study the combinatorics of hyperplane arrangements over arbitrary fields. Specifically, we determine in which situation an arrangement and its reduction modulo a prime number have isomorphic lattices via the use of minimal strong $sigma$-Grobner b ases. Moreover, we prove that the Teraos conjecture over finite fields implies the conjecture over the rationals.
A catalogue of simplicial hyperplane arrangements was first given by Grunbaum in 1971. These arrangements naturally generalize finite Coxeter arrangements and the weak order through the poset of regions. For simplicial arrangements, posets of regions are in fact lattices. We update Grunbaums catalogue, providing normals and invariants for all known sporadic simplicial arrangements with up to 37 lines. The weak order is known to be congruence normal, and congruence normality for simplicial arrangements can be determined using polyhedral cones called shards. In this article, we provide additional structure to the catalogue of simplicial hyperplane arrangements by determining which arrangements always/sometimes/never lead to congruence normal lattices of regions. To this end, we use oriented matroids to recast shards as covectors to determine congruence normality of large hyperplane arrangements. As a consequence of this approach we derive in particular which lattices of regions of sporadic simplicial arrangements of rank 3 are always congruence normal. We also show that lattices of regions from finite Weyl groupoids of any rank are congruence normal.
We study the combinatorics of tropical hyperplane arrangements, and their relationship to (classical) hyperplane face monoids. We show that the refinement operation on the faces of a tropical hyperplane arrangement, introduced by Ardila and Develin i n their definition of a tropical oriented matroid, induces an action of the hyperplane face monoid of the classical braid arrangement on the arrangement, and hence on a number of interesting related structures. Along the way, we introduce a new characterization of the types (in the sense of Develin and Sturmfels) of points with respect to a tropical hyperplane arrangement, in terms of partial bijections which attain permanents of submatrices of a matrix which naturally encodes the arrangement.
In this article, we study the weak and strong Lefschetz properties, and the related notion of almost revlex ideal, in the non-Artinian case, proving that several results known in the Artinian case hold also in this more general setting. We then apply the obtained results to the study of the Jacobian algebra of hyperplane arrangements.
We introduce a new algebra associated with a hyperplane arrangement $mathcal{A}$, called the Solomon-Terao algebra $mbox{ST}(mathcal{A},eta)$, where $eta$ is a homogeneous polynomial. It is shown by Solomon and Terao that $mbox{ST}(mathcal{A},eta)$ i s Artinian when $eta$ is generic. This algebra can be considered as a generalization of coinvariant algebras in the setting of hyperplane arrangements. The class of Solomon-Terao algebras contains cohomology rings of regular nilpotent Hessenberg varieties. We show that $mbox{ST}(mathcal{A},eta)$ is a complete intersection if and only if $mathcal{A}$ is free. We also give a factorization formula of the Hilbert polynomials when $mathcal{A}$ is free, and pose several related questions, problems and conjectures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا