ﻻ يوجد ملخص باللغة العربية
There is a trinity relationship between hyperplane arrangements, matroids and convex polytopes. We expand it as resolving the complexity issue expected by Mnevs universality theorem and conduct combinatorializing so the theory over fields becomes realization of our combinatorial theory. A main theorem is that for n less than or equal to 9 a specific and general enough kind of matroid tilings in the hypersimplex Delta(3,n) extend to matroid subdivisions of Delta(3,n) with the bound n=9 sharp. As a straightforward application to realizable cases, we solve an open problem in algebraic geometry proposed in 2008.
We study the combinatorics of hyperplane arrangements over arbitrary fields. Specifically, we determine in which situation an arrangement and its reduction modulo a prime number have isomorphic lattices via the use of minimal strong $sigma$-Grobner b
A catalogue of simplicial hyperplane arrangements was first given by Grunbaum in 1971. These arrangements naturally generalize finite Coxeter arrangements and the weak order through the poset of regions. For simplicial arrangements, posets of regions
We study the combinatorics of tropical hyperplane arrangements, and their relationship to (classical) hyperplane face monoids. We show that the refinement operation on the faces of a tropical hyperplane arrangement, introduced by Ardila and Develin i
In this article, we study the weak and strong Lefschetz properties, and the related notion of almost revlex ideal, in the non-Artinian case, proving that several results known in the Artinian case hold also in this more general setting. We then apply
We introduce a new algebra associated with a hyperplane arrangement $mathcal{A}$, called the Solomon-Terao algebra $mbox{ST}(mathcal{A},eta)$, where $eta$ is a homogeneous polynomial. It is shown by Solomon and Terao that $mbox{ST}(mathcal{A},eta)$ i