ﻻ يوجد ملخص باللغة العربية
We study the symmetric subquotient decomposition of the associated graded algebras $A^*$ of a non-homogeneous commutative Artinian Gorenstein (AG) algebra $A$. This decomposition arises from the stratification of $A^*$ by a sequence of ideals $A^*=C_A(0)supset C_A(1)supsetcdots$ whose successive quotients $Q(a)=C(a)/C(a+1)$ are reflexive $A^*$ modules. These were introduced by the first author, and have been used more recently by several groups, especially those interested in short Gorenstein algebras, and in the scheme length (cactus rank) of forms. For us a Gorenstein sequence is an integer sequence $H$ occurring as the Hilbert function for an AG algebra $A$, that is not necessarily homogeneous. Such a Hilbert function $H(A)$ is the sum of symmetric non-negative sequences $H_A(a)=H(Q_A(a))$, each having center of symmetry $(j-a)/2$ where $j$ is the socle degree of $A$: we call these the symmetry conditions, and the decomposition $mathcal{D}(A)=(H_A(0),H_A(1),ldots)$ the symmetric decomposition of $H(A)$. We here study which sequences may occur as the summands $H_A(a)$: in particular we construct in a systematic way examples of AG algebras $A$ for which $H_A(a)$ can have interior zeroes, as $H_A(a)=(0,s,0,ldots,0,s,0)$. We also study the symmetric decomposition sets $mathcal{D}(A)$, and in particular determine which sequences $H_A(a)$ can be non-zero when the dual generator is linear in a subset of the variables. Several groups have studied exotic summands of the Macaulay dual generator $F$. Studying these, we recall a normal form for the Macaulay dual generator of an AG algebra that has no exotic summands. We apply this to Gorenstein algebras that are connected sums. We give throughout many examples and counterexamples, and conclude with some open questions about symmetric decomposition.
A connected sum construction for local rings was introduced in a paper by H. Ananthnarayan, L. Avramov, and W.F. Moore. In the graded Artinian Gorenstein case, this can be viewed as an algebraic analogue of the topological construction of the same na
Differential graded (DG) algebras are powerful tools from rational homotopy theory. We survey some recent applications of these in the realm of homological commutative algebra.
We introduce the cohomological blow up of a graded Artinian Gorenstein (AG) algebra along a surjective map, which we term BUG (Blow Up Gorenstein) for short. This is intended to translate to an algebraic context the cohomology ring of a blow up of a
In this paper, we make the notion of approximating an Artinian local ring by a Gorenstein Artin local ring precise using the concept of Gorenstein colength. We also answer the question as to when the Gorenstein colength is at most two.
We study the problem of whether an arbitrary codimension three graded artinian Gorenstein algebra has the Weak Lefschetz Property. We reduce this problem to checking whether it holds for all compressed Gorenstein algebras of odd socle degree. In the