ﻻ يوجد ملخص باللغة العربية
In Dirac materials linear band dispersion blocks momentum-conserving interband transitions, creating a bottleneck for electron-hole pair production and carrier multiplication in the photoexcitation cascade. Here we show that the decays are unblocked and the bottleneck is relieved by subtle many-body effects involving multiple off-shell e-h pairs. The decays result from a collective behavior due to emission of many soft pairs. We discuss characteristic signatures of the off-shell pathways, in particular the sharp angular distribution of secondary carriers, resembling relativistic jets in high-energy physics. The jets can be directly probed using solid-state equivalent of particle detectors. Collinear scattering enhances carrier multiplication, allowing for emission of as many as ${sim}10$ secondary carriers per single absorbed photon.
The conversion of light into free electron-hole pairs constitutes the key process in the fields of photodetection and photovoltaics. The efficiency of this process depends on the competition of different relaxation pathways and can be greatly enhance
We theoretically study the population inversion and negative dynamic conductivity in intrinsic graphene in the terahertz (THz) frequency range upon pulse photoexcitation with near-/mid-infrared wavelength. The threshold pulse energy required for the
We propose and evaluate the vertical cascade terahertz and infrared photodetectors based on multiple-graphene-layer (GL) structures with thin tunnel barrier layers (made of tungsten disulfide or related materials). The photodetector operation is asso
We study a relativistic quantum cavity system realized by etching out from a graphene sheet by quantum transport measurements and theoretical calculations. The conductance of the graphene cavity has been measured as a function of the back gate voltag
Electrons in graphene, behaving as massless relativistic Dirac particles, provide a new perspective on the relation between condensed matter and high-energy physics. We discuss atomic collapse, a novel state of superheavy atoms stripped of their disc