ﻻ يوجد ملخص باللغة العربية
We study a relativistic quantum cavity system realized by etching out from a graphene sheet by quantum transport measurements and theoretical calculations. The conductance of the graphene cavity has been measured as a function of the back gate voltage (or the Fermi energy) and the magnetic field applied perpendicular to the graphene sheet, and characteristic conductance contour patterns are observed in the measurements. In particular, two types of high conductance contour lines, i.e., straight and parabolic-like high conductance contour lines, are found in the measurements. The theoretical calculations are performed within the framework of tight-binding approach and Greens function formalism. Similar characteristic high conductance contour features as in the experiments are found in the calculations. The wave functions calculated at points selected along a straight conductance contour line are found to be dominated by a chain of scars of high probability distributions arranged as a necklace following the shape of cavity and the current density distributions calculated at these point are dominated by an overall vortex in the cavity. These characteristics are found to be insensitive to increasing magnetic field. However, the wave function probability distributions and the current density distributions calculated at points selected along a parabolic-like contour line show a clear dependence on increasing magnetic field, and the current density distributions at these points are characterized by the complex formation of several localized vortices in the cavity. Our work brings a new insight into quantum chaos in relativistic particle systems and would greatly stimulate experimental and theoretical efforts towards this still emerging field.
In the half-filled zero-energy Landau level of bilayer graphene, competing phases with spontaneously broken symmetries and an intriguing quantum critical behavior have been predicted. Here we investigate signatures of these broken-symmetry phases in
We investigate transport through a normal-superconductor (NS) junction made from a quantum spin Hall (QSH) system with helical edge states and a two-dimensional (2D) chiral topological superconductor (TSC) having a chiral Majorana edge mode. We emplo
We propose a method of measuring the electron temperature $T_e$ in mesoscopic conductors and demonstrate experimentally its applicability to micron-size graphene devices in the linear-response regime ($T_eapprox T$, the bath temperature). The method
In Dirac materials linear band dispersion blocks momentum-conserving interband transitions, creating a bottleneck for electron-hole pair production and carrier multiplication in the photoexcitation cascade. Here we show that the decays are unblocked
We report on the observation of periodic conductance oscillations near quantum Hall plateaus in suspended graphene nanoribbons. They are attributed to single quantum dots that form in the narrowest part of the ribbon, in the valleys and hills of a di