ﻻ يوجد ملخص باللغة العربية
Electrons in graphene, behaving as massless relativistic Dirac particles, provide a new perspective on the relation between condensed matter and high-energy physics. We discuss atomic collapse, a novel state of superheavy atoms stripped of their discrete energy levels, which are transformed into resonant states. Charge impurities in graphene provide a convenient condensed matter system in which this effect can be explored. Relativistic dynamics also manifests itself in another system, graphene p-n junctions. We show how the transport problem in the presence of magnetic field can be solved with the help of a Lorentz transformation, and use it to investigate magnetotransport in p-n junctions. Finally, we review recent proposal to use Fabry-Perot resonances in p-n-p structures as a vehicle to investigate Klein scattering, another hallmark phenomenon of relativistic dynamics.
After the first unequivocal demonstration of spin transport in graphene (Tombros et al., 2007), surprisingly at room temperature, it was quickly realized that this novel material was relevant for both fundamental spintronics and future applications.
Graphene is an ideal material to study fundamental Coulomb- and phonon-induced carrier scattering processes. Its remarkable gapless and linear band structure opens up new carrier relaxation channels. In particular, Auger scattering bridging the valen
Atomic collapse in graphene nanoribbons behaves in a fundamentally different way as compared to monolayer graphene, due to the presence of multiple energy bands and the effect of edges. For armchair nanoribbons we find that bound states gradually tra
Graphene and other two-dimensional materials display remarkable optical properties, including a simple light transparency of $T approx 1 - pi alpha$ for light in the visible region. Most theoretical rationalizations of this universal opacity employ a
Coupling high quality, suspended atomic membranes to specialized electrodes enables investigation of many novel phenomena, such as spin or Cooper pair transport in these two dimensional systems. However, many electrode materials are not stable in aci