ﻻ يوجد ملخص باللغة العربية
Stochastic kriging is a popular metamodeling technique for representing the unknown response surface of a simulation model. However, the simulation model may be inadequate in the sense that there may be a non-negligible discrepancy between it and the real system of interest. Failing to account for the model discrepancy may conceivably result in erroneous prediction of the real systems performance and mislead the decision-making process. This paper proposes a metamodel that extends stochastic kriging to incorporate the model discrepancy. Both the simulation outputs and the real data are used to characterize the model discrepancy. The proposed metamodel can provably enhance the prediction of the real systems performance. We derive general results for experiment design and analysis, and demonstrate the advantage of the proposed metamodel relative to competing methods. Finally, we study the effect of Common Random Numbers (CRN). The use of CRN is well known to be detrimental to the prediction accuracy of stochastic kriging in general. By contrast, we show that the effect of CRN in the new context is substantially more complex. The use of CRN can be either detrimental or beneficial depending on the interplay between the magnitude of the observation errors and other parameters involved.
Stochastic kriging is a popular technique for simulation metamodeling due to its exibility and analytical tractability. Its computational bottleneck is the inversion of a covariance matrix, which takes $O(n^3)$ time in general and becomes prohibitive
When we use simulation to evaluate the performance of a stochastic system, the simulation often contains input distributions estimated from real-world data; therefore, there is both simulation and input uncertainty in the performance estimates. Ignor
The vast majority of models for the spread of communicable diseases are parametric in nature and involve underlying assumptions about how the disease spreads through a population. In this article we consider the use of Bayesian nonparametric approach
This paper introduces and analyzes a stochastic search method for parameter estimation in linear regression models in the spirit of Beran and Millar (1987). The idea is to generate a random finite subset of a parameter space which will automatically
Scientists and engineers commonly use simulation models to study real systems for which actual experimentation is costly, difficult, or impossible. Many simulations are stochastic in the sense that repeated runs with the same input configuration will