ﻻ يوجد ملخص باللغة العربية
Scientists and engineers commonly use simulation models to study real systems for which actual experimentation is costly, difficult, or impossible. Many simulations are stochastic in the sense that repeated runs with the same input configuration will result in different outputs. For expensive or time-consuming simulations, stochastic kriging citep{ankenman} is commonly used to generate predictions for simulation model outputs subject to uncertainty due to both function approximation and stochastic variation. Here, we develop and justify a few guidelines for experimental design, which ensure accuracy of stochastic kriging emulators. We decompose error in stochastic kriging predictions into nominal, numeric, parameter estimation and parameter estimation numeric components and provide means to control each in terms of properties of the underlying experimental design. The design properties implied for each source of error are weakly conflicting and broad principles are proposed. In brief, space-filling properties small fill distance and large separation distance should balance with replication at distinct input configurations, with number of replications depending on the relative magnitudes of stochastic and process variability. Non-stationarity implies higher input density in more active regions, while regression functions imply a balance with traditional design properties. A few examples are presented to illustrate the results.
Kriging based on Gaussian random fields is widely used in reconstructing unknown functions. The kriging method has pointwise predictive distributions which are computationally simple. However, in many applications one would like to predict for a rang
This work investigates the prediction performance of the kriging predictors. We derive some error bounds for the prediction error in terms of non-asymptotic probability under the uniform metric and $L_p$ metrics when the spectral densities of both th
We consider the problem of estimating common community structures in multi-layer stochastic block models, where each single layer may not have sufficient signal strength to recover the full community structure. In order to efficiently aggregate signa
We consider a dynamic version of the stochastic block model, in which the nodes are partitioned into latent classes and the connection between two nodes is drawn from a Bernoulli distribution depending on the classes of these two nodes. The temporal
A common concern with Bayesian methodology in scientific contexts is that inferences can be heavily influenced by subjective biases. As presented here, there are two types of bias for some quantity of interest: bias against and bias in favor. Based u