ﻻ يوجد ملخص باللغة العربية
When we use simulation to evaluate the performance of a stochastic system, the simulation often contains input distributions estimated from real-world data; therefore, there is both simulation and input uncertainty in the performance estimates. Ignoring either source of uncertainty underestimates the overall statistical error. Simulation uncertainty can be reduced by additional computation (e.g., more replications). Input uncertainty can be reduced by collecting more real-world data, when feasible. This paper proposes an approach to quantify overall statistical uncertainty when the simulation is driven by independent parametric input distributions; specifically, we produce a confidence interval that accounts for both simulation and input uncertainty by using a metamodel-assisted bootstrapping approach. The input uncertainty is measured via bootstrapping, an equation-based stochastic kriging metamodel propagates the input uncertainty to the output mean, and both simulation and metamodel uncertainty are derived using properties of the metamodel. A variance decomposition is proposed to estimate the relative contribution of input to overall uncertainty; this information indicates whether the overall uncertainty can be significantly reduced through additional simulation alone. Asymptotic analysis provides theoretical support for our approach, while an empirical study demonstrates that it has good finite-sample performance.
Stochastic kriging is a popular metamodeling technique for representing the unknown response surface of a simulation model. However, the simulation model may be inadequate in the sense that there may be a non-negligible discrepancy between it and the
Inference on unknown quantities in dynamical systems via observational data is essential for providing meaningful insight, furnishing accurate predictions, enabling robust control, and establishing appropriate designs for future experiments. Merging
Gaussian process (GP) regression in large-data contexts, which often arises in surrogate modeling of stochastic simulation experiments, is challenged by cubic runtimes. Coping with input-dependent noise in that setting is doubly so. Recent advances t
Taking the Fourier integral theorem as our starting point, in this paper we focus on natural Monte Carlo and fully nonparametric estimators of multivariate distributions and conditional distribution functions. We do this without the need for any esti
Causal mediation analysis has historically been limited in two important ways: (i) a focus has traditionally been placed on binary treatments and static interventions, and (ii) direct and indirect effect decompositions have been pursued that are only