ﻻ يوجد ملخص باللغة العربية
We construct a local Cohen-Macaulay ring $R$ with a prime ideal $mathfrak{p}inspec(R)$ such that $R$ satisfies the uniform Auslander condition (UAC), but the localization $R_{mathfrak{p}}$ does not satisfy Auslanders condition (AC). Given any positive integer $n$, we also construct a local Cohen-Macaulay ring $R$ with a prime ideal $mathfrak{p}inspec(R)$ such that $R$ has exactly two non-isomorphic semidualizing modules, but the localization $R_{mathfrak{p}}$ has $2^n$ non-isomorphic semidualizing modules. Each of these examples is constructed as a fiber product of two local rings over their common residue field. Additionally, we characterize the non-trivial Cohen-Macaulay fiber products of finite Cohen-Macaulay type.
Let $(R,frak m)$ be a commutative noetherian local ring. In this paper, we prove that if $frak m$ is decomposable, then for any finitely generated $R$-module $M$ of infinite projective dimension $frak m$ is a direct summand of (a direct sum of) syzyg
For a monomial ideal $I$, we consider the $i$th homological shift ideal of $I$, denoted by $text{HS}_i(I)$, that is, the ideal generated by the $i$th multigraded shifts of $I$. Some algebraic properties of this ideal are studied. It is shown that for
Let $mathcal{I}(R)$ be the set of all ideals of a ring $R$, $delta$ be an expansion function of $mathcal{I}(R)$. In this paper, the $delta$-$J$-ideal of a commutative ring is defined, that is, if $a, bin R$ and $abin Iin mathcal{I}(R)$, then $ain J(R
We introduce a notion of generalized local cohomology modules with respect to a pair of ideals $(I,J)$ which is a generalization of the concept of local cohomology modules with respect to $(I,J).$ We show that generalized local cohomology modules $
Building on previous work by the same authors, we show that certain ideals defining Gorenstein rings have expected resurgence, and thus satisfy the stable Harbourne Conjecture. In prime characteristic, we can take any radical ideal defining a Gorenst