ﻻ يوجد ملخص باللغة العربية
For a monomial ideal $I$, we consider the $i$th homological shift ideal of $I$, denoted by $text{HS}_i(I)$, that is, the ideal generated by the $i$th multigraded shifts of $I$. Some algebraic properties of this ideal are studied. It is shown that for any monomial ideal $I$ and any monomial prime ideal $P$, $text{HS}_i(I(P))subseteq text{HS}_i(I)(P)$ for all $i$, where $I(P)$ is the monomial localization of $I$. In particular, we consider the homological shift ideal of some families of monomial ideals with linear quotients. For any $textbf{c}$-bounded principal Borel ideal $I$ and for the edge ideal of complement of any path graph, it is proved that $text{HS}_i(I)$ has linear quotients for all $i$. As an example of $textbf{c}$-bounded principal Borel ideals, Veronese type ideals are considered and it is shown that the homological shift ideal of these ideals are polymatroidal. This implies that for any polymatroidal ideal which satisfies the strong exchange property, $text{HS}_j(I)$ is again a polymatroidal ideal for all $j$. Moreover, for any edge ideal with linear resolution, the ideal $text{HS}_j(I)$ is characterized and it is shown that $text{HS}_1(I)$ has linear quotients.
We construct a local Cohen-Macaulay ring $R$ with a prime ideal $mathfrak{p}inspec(R)$ such that $R$ satisfies the uniform Auslander condition (UAC), but the localization $R_{mathfrak{p}}$ does not satisfy Auslanders condition (AC). Given any positiv
Let I be either the ideal of maximal minors or the ideal of 2-minors of a row graded or column graded matrix of linear forms L. In two previous papers we showed that I is a Cartwright-Sturmfels ideal, that is, the multigraded generic initial ideal gi
It is proved that a module $M$ over a Noetherian local ring $R$ of prime characteristic and positive dimension has finite flat dimension if Tor$_i^R({}^e R, M)=0$ for dim $R$ consecutive positive values of $i$ and infinitely many $e$. Here ${}^e R$ d
Let $G$ be a finite simple connected graph on $[n]$ and $R = K[x_1, ldots, x_n]$ the polynomial ring in $n$ variables over a field $K$. The edge ideal of $G$ is the ideal $I(G)$ of $R$ which is generated by those monomials $x_ix_j$ for which ${i, j}$
The commutative and homological algebra of modules over posets is developed, as closely parallel as possible to the algebra of finitely generated modules over noetherian commutative rings, in the direction of finite presentations, primary decompositi