ترغب بنشر مسار تعليمي؟ اضغط هنا

Expected resurgence of ideals defining Gorenstein rings

180   0   0.0 ( 0 )
 نشر من قبل Elo\\'isa Grifo
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Building on previous work by the same authors, we show that certain ideals defining Gorenstein rings have expected resurgence, and thus satisfy the stable Harbourne Conjecture. In prime characteristic, we can take any radical ideal defining a Gorenstein ring in a regular ring, provided its symbolic powers are given by saturations with the maximal ideal. While this property is not suitable for reduction to characteristic $p$, we show that a similar result holds in equicharacteristic $0$ under the additional hypothesis that the symbolic Rees algebra of $I$ is noetherian.



قيم البحث

اقرأ أيضاً

Let $R$ be a polynomial ring over a field and $I subset R$ be a Gorenstein ideal of height three that is minimally generated by homogeneous polynomials of the same degree. We compute the multiplicity of the saturated special fiber ring of $I$. The ob tained formula depends only on the number of variables of $R$, the minimal number of generators of $I$, and the degree of the syzygies of $I$. Applying results from arXiv:1805.05180, we get a formula for the $j$-multiplicity of $I$ and an effective method to study a rational map determined by a minimal set of generators of $I$.
Let $mathbb{K}$ be a field and $R = mathbb{K}[x_1, ldots, x_n]$. We obtain an improved upper bound for asymptotic resurgence of squarefree monomial ideals in $R$. We study the effect on the resurgence when sum, product and intersection of ideals are taken. We obtain sharp upper and lower bounds for the resurgence and asymptotic resurgence of cover ideals of finite simple graphs in terms of associated combinatorial invariants. We also explicitly compute the resurgence and asymptotic resurgence of cover ideals of several classes of graphs. We characterize a graph being bipartite in terms of the resurgence and asymptotic resurgence of edge and cover ideals. We also compute explicitly the resurgence and asymptotic resurgence of edge ideals of some classes of graphs.
In this article we associate to every lattice ideal $I_{L,rho}subset K[x_1,..., x_m]$ a cone $sigma $ and a graph $G_{sigma}$ with vertices the minimal generators of the Stanley-Reisner ideal of $sigma $. To every polynomial $F$ we assign a subgraph $G_{sigma}(F)$ of the graph $G_{sigma}$. Every expression of the radical of $I_{L,rho}$, as a radical of an ideal generated by some polynomials $F_1,..., F_s$ gives a spanning subgraph of $G_{sigma}$, the $cup_{i=1}^s G_{sigma}(F_i)$. This result provides a lower bound for the minimal number of generators of $I_{L,rho}$ and therefore improves the generalized Krulls principal ideal theorem for lattice ideals. But mainly it provides lower bounds for the binomial arithmetical rank and the $A$-homogeneous arithmetical rank of a lattice ideal. Finally we show, by a family of examples, that the bounds given are sharp.
Let $k$ be a field and $G subseteq Gl_n(k)$ be a finite group with $|G|^{-1} in k$. Let $G$ act linearly on $A = k[X_1, ldots, X_n]$ and let $A^G$ be the ring of invariants. Suppose there does not exist any non-trivial one-dimensional representation of $G$ over $k$. Then we show that if $Q$ is a $G$-invariant homogeneous ideal of $A$ such that $A/Q$ is a Gorenstein ring then $A^G/Q^G$ is also a Gorenstein ring.
The main aim of this article is to study the relation between $F$-injective singularity and the Frobenius closure of parameter ideals in Noetherian rings of positive characteristic. The paper consists of the following themes, including many other top ics. We prove that if every parameter ideal of a Noetherian local ring of prime characteristic $p>0$ is Frobenius closed, then it is $F$-injective. We prove a necessary and sufficient condition for the injectivity of the Frobenius action on $H^i_{fm}(R)$ for all $i le f_{fm}(R)$, where $f_{fm}(R)$ is the finiteness dimension of $R$. As applications, we prove the following results. (a) If the ring is $F$-injective, then every ideal generated by a filter regular sequence, whose length is equal to the finiteness dimension of the ring, is Frobenius closed. It is a generalization of a recent result of Ma and which is stated for generalized Cohen-Macaulay local rings. (b) Let $(R,fm,k)$ be a generalized Cohen-Macaulay ring of characteristic $p>0$. If the Frobenius action is injective on the local cohomology $H_{fm}^i(R)$ for all $i < dim R$, then $R$ is Buchsbaum. This gives an answer to a question of Takagi. We consider the problem when the union of two $F$-injective closed subschemes of a Noetherian $mathbb{F}_p$-scheme is $F$-injective. Using this idea, we construct an $F$-injective local ring $R$ such that $R$ has a parameter ideal that is not Frobenius closed. This result adds a new member to the family of $F$-singularities. We give the first ideal-theoretic characterization of $F$-injectivity in terms the Frobenius closure and the limit closure. We also give an answer to the question about when the Frobenius action on the top local cohomology is injective.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا