ﻻ يوجد ملخص باللغة العربية
We study the entanglement entropy for open bosonic strings on multiple $Dp$-branes by using the covariant open string field theory. Choosing one of the spatial coordinates which are tangential to the hyperplane on which $Dp$-branes are located, we divide the hyperplane into two halves. By using the string wavefunction in the Fock space representation, we evaluate the entanglement entropy. The entanglement entropy is found to be proportional to the area of $(p-1)$-dimensional boundary of the bipartite hyperplanes and divergent in the ultraviolet (UV) region as well as in the infrared (IR) region. However, the leading divergences are mainly due to tachyon contributions to the entanglement entropy, which may be absent in supersymmetric string theories. Apart from the divergences thanks to tachyons, the entanglement entropy for open bosonic strings on $Dp$-branes is finite for $2 le p le d_{text{critical}} -2$ and logarithmically divergent for $p =1, d_{text{critical}}-1$.
We study covariant open bosonic string field theories on multiple $Dp$-branes by using the deformed cubic string field theory which is equivalent to the string field theory in the proper-time gauge. Constructing the Fock space representations of the
It is well known that the Reissner-Norstrom solution of Einstein-Maxwell theory cannot be cylindrically extended to higher dimension, as with the black hole solutions in vacuum. In this paper we show that this result is circumvented in Lovelock gravi
We consider scattering of Faddeev-Kulish electrons in QED and study the entanglement between the hard and soft particles in the final state at the perturbative level. The soft photon spectrum naturally splits into two parts: i) soft photons with ener
We investigate the holographic entanglement entropy in the Rindler-AdS space-time to obtain an exact solution for the corresponding minimal surface. Moreover, the holographic entanglement entropy of the charged single accelerated AdS Black holes in f
We derive the holographic entanglement entropy functional for a generic gravitational theory whose action contains terms up to cubic order in the Riemann tensor, and in any dimension. This is the simplest case for which the so-called splitting proble