ترغب بنشر مسار تعليمي؟ اضغط هنا

Holographic entanglement entropy for charged accelerating AdS black holes

78   0   0.0 ( 0 )
 نشر من قبل Behrouz Mirza
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the holographic entanglement entropy in the Rindler-AdS space-time to obtain an exact solution for the corresponding minimal surface. Moreover, the holographic entanglement entropy of the charged single accelerated AdS Black holes in four dimensions is investigated. We obtain the volume of the codimension one-time slice in the bulk geometry enclosed by the minimal surface for both the RindlerAdS space-time and the charged accelerated AdS Black holes in the bulk. It is shown that the holographic entanglement entropy and the volume enclosed by the minimal hyper-surface in both the Rindler spacetime and the charged single accelerated AdS Black holes (C-metric) in the bulk decrease with increasing acceleration parameter. Behavior of the entanglement entropy, subregion size and value of the acceleration parameter are investigated. It is shown that for jAj < 0:2 a larger subregion on the boundary is equivalent to less information about the space-time.



قيم البحث

اقرأ أيضاً

We consider the refinement of the holographic entanglement entropy for the holographic dual theories to the AdS solitons and AdS black holes, including the corrected ones by the Gauss-Bonnet term. The refinement is obtained by extracting the UV-indep endent piece of the holographic entanglement entropy, the so-called renormalized entanglement entropy which is independent of the choices of UV cutoff. Our main results are (i) the renormalized entanglement entropies of the AdS$_{d+1}$ soliton for $d=4,5$ are neither monotonically decreasing along the RG flow nor positive definite, especially around the deconfinement/confinement phase transition; (ii) there is no topological entanglement entropy for AdS$_5$ soliton even with Gauss-Bonnet correction; (iii) for the AdS black holes, the renormalized entanglement entropy obeys an expected volume law at IR regime, and the transition between UV and IR regimes is a smooth crossover even with Gauss-Bonnet correction; (iv) based on AdS/MERA conjecture, we postulate that the IR fixed-point state for the non-extremal AdS soliton is a trivial product state.
90 - Marco Astorino 2016
The near horizon geometry of the rotating C-metric, describing accelerating Kerr-Newman black holes, is analysed. It is shown that, at extremality, even though not it is isomorphic to the extremal Kerr-Newman, it remains a warped and twisted product of $AdS_2 times S^2$. Therefore the methods of the Kerr/CFT correspondence can successfully be applied to build a CFT dual model, whose entropy reproduce, through the Cardy formula, the Beckenstein-Hawking entropy of the accelerating black hole. The mass of accelerating Kerr-Newman black hole, which fulfil the first law of thermodynamics, is presented. Further generalisation in presence of an external Melvin-like magnetic field, used to regularise the conical singularity characteristic of the C-metrics, shows that the Kerr/CFT correspondence can be applied also for the accelerating and magnetised extremal black holes.
72 - Chanyong Park 2018
We investigate the holographic entanglement entropy of deformed conformal field theories which are dual to a cutoff AdS space. The holographic entanglement entropy evaluated on a three-dimensional Poincare AdS space with a finite cutoff can be reinte rpreted as that of the dual field theory deformed by either a boost or $T bar{T}$ deformation. For the boost case, we show that, although it trivially acts on the underlying theory, it nontrivially affects the entanglement entropy due to the length contraction. For a three-dimensional AdS, we show that the effect of the boost transformation can be reinterpreted as the rescaling of the energy scale, similar to the $T bar{T}$ deformation. Under the boost and $T bar{T}$ deformation, the $c$-function of the entanglement entropy exactly shows the features expected by the Zamoldchikovs $c$-theorem. The deformed theory is always stationary at a UV fixed point and monotonically flows to another CFT in the IR fixed point. We also show that the holographic entanglement entropy in a Poincare cutoff AdS space can reproduce the exact same result of the $T bar{T}$ deformed theory on a two-dimensional sphere.
We provide the metric, the gravitino fields and the gauge fields to all orders in the fermionic zero modes for D=5 and D=4, N=2 gauged supergravity solutions starting from non-extremal AdS--Schwarzschild black holes. We compute the Brown-York stress- -energy tensor on the boundary of AdS_5 / AdS_4 spaces and we discuss some implications of the fermionic corrections to perfect fluid interpretation of the boundary theory. The complete non-linear solution, which we denote as fermionic wig, is achieved by acting with supersymmetry transformations upon the supergravity fields and that expansion naturally truncates at some order in the fermionic zero modes.
160 - M.H. Dehghani , R. Pourhasan , 2011
We investigate modifications of the Lifshitz black hole solutions due to the presence of Maxwell charge in higher dimensions for arbitrary $z$ and any topology. We find that the behaviour of large black holes is insensitive to the topology of the sol utions, whereas for small black holes significant differences emerge. We generalize a relation previously obtained for neutral Lifshitz black branes, and study more generally the thermodynamic relationship between energy, entropy, and chemical potential. We also consider the effect of Maxwell charge on the effective potential between objects in the dual theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا