ﻻ يوجد ملخص باللغة العربية
We consider scattering of Faddeev-Kulish electrons in QED and study the entanglement between the hard and soft particles in the final state at the perturbative level. The soft photon spectrum naturally splits into two parts: i) soft photons with energies less than a characteristic infrared scale $E_d$ present in the clouds accompanying the asymptotic charged particles, and ii) sufficiently low energy photons with energies greater than $E_d$, comprising the soft part of the emitted radiation. We construct the density matrix associated with tracing over the radiative soft photons and calculate the entanglement entropy perturbatively. We find that the entanglement entropy is free of any infrared divergences order by order in perturbation theory. On the other hand infrared divergences in the perturbative expansion for the entanglement entropy appear upon tracing over the entire spectrum of soft photons, including those in the clouds. To leading order the entanglement entropy is set by the square of the Fock basis amplitude for real single soft photon emission, which leads to a logarithmic infrared divergence when integrated over the photon momentum. We argue that the infrared divergences in the entanglement entropy (per particle flux per unit time) in this latter case persist to all orders in perturbation theory in the infinite volume limit.
The area of a cross-sectional cut $Sigma$ of future null infinity ($mathcal{I}^+$) is infinite. We define a finite, renormalized area by subtracting the area of the same cut in any one of the infinite number of BMS-degenerate classical vacua. The ren
We derive the holographic entanglement entropy functional for a generic gravitational theory whose action contains terms up to cubic order in the Riemann tensor, and in any dimension. This is the simplest case for which the so-called splitting proble
The holographic entanglement entropy (HEE) of the minimal geometrical deformation (MGD) procedure and extensions (EMGD), is scrutinized within the membrane paradigm of AdS/CFT. The HEE corrections of the Schwarzschild and Reissner--Nordstrom solution
Quantum corrections to the entanglement entropy of matter fields interacting with dynamical gravity have proven to be very important in the study of the black hole information problem. We consider a one-particle excited state of a massive scalar fiel
We examine the deSitter entropy in the braneworld model with the Gauss-Bonnet/Lovelock terms. Then, we can see that the deSitter entropy computed through the Euclidean action exactly coincides with the holographic entanglement entropy.