ﻻ يوجد ملخص باللغة العربية
A relation $mathcal{M}_{mathrm{SHS}tomathrm{LJ}}$ between the set of non-isomorphic sticky hard sphere clusters $mathcal{M}_mathrm{SHS}$ and the sets of local energy minima $mathcal{M}_{LJ}$ of the $(m,n)$-Lennard-Jones potential $V^mathrm{LJ}_{mn}(r) = frac{varepsilon}{n-m} [ m r^{-n} - n r^{-m} ]$ is established. The number of nonisomorphic stable clusters depends strongly and nontrivially on both $m$ and $n$, and increases exponentially with increasing cluster size $N$ for $N gtrsim 10$. While the map from $mathcal{M}_mathrm{SHS}to mathcal{M}_{mathrm{SHS}tomathrm{LJ}}$ is non-injective and non-surjective, the number of Lennard-Jones structures missing from the map is relatively small for cluster sizes up to $N=13$, and most of the missing structures correspond to energetically unfavourable minima even for fairly low $(m,n)$. Furthermore, even the softest Lennard-Jones potential predicts that the coordination of 13 spheres around a central sphere is problematic (the Gregory-Newton problem). A more realistic extended Lennard-Jones potential chosen from coupled-cluster calculations for a rare gas dimer leads to a substantial increase in the number of nonisomorphic clusters, even though the potential curve is very similar to a (6,12)-Lennard-Jones potential.
We present a new theoretical framework for modelling the fusion process of Lennard-Jones (LJ) clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster
We study the energy landscapes of particles with short-range attractive interactions as the range of the interactions increases. Starting with the set of local minima for $6leq Nleq12$ hard spheres that are sticky, i.e. they interact only when their
We report on numerical procedures for, and preliminary results on the search for, tunnelling centres in Lennard-Jones clusters, seen as simple model systems of glasses. Several of the double-well potentials identified are good candidates to give rise
The binary Kob-Andersen (KA) Lennard-Jones mixture is the standard model for computational studies of viscous liquids and the glass transition. For very long simulations the viscous KA system crystallizes, however, by phase separating into a pure A p
Electrons released from clusters through strong Xray pulses show broad kinetic-energy spectra, extending from the atomic excess energy down to the threshold, where usually a strong peak appears. These low-energy electrons are normally attributed to e