ﻻ يوجد ملخص باللغة العربية
We study the energy landscapes of particles with short-range attractive interactions as the range of the interactions increases. Starting with the set of local minima for $6leq Nleq12$ hard spheres that are sticky, i.e. they interact only when their surfaces are exactly in contact, we use numerical continuation to evolve the local minima (clusters) as the range of the potential increases, using both the Lennard-Jones and Morse families of interaction potentials. As the range increases, clusters merge, until at long ranges only one or two clusters are left. We compare clusters obtained by continuation with different potentials and find that for short and medium ranges, up to about 30% of particle diameter, the continued clusters are nearly identical, both within and across families of potentials. For longer ranges the clusters vary significantly, with more variation between families of potentials than within a family. We analyze the mechanisms behind the merge events, and find that most rearrangements occur when a pair of non-bonded particles comes within the range of the potential. An exception occurs for nonharmonic clusters, those that have a zero eigenvalue in their Hessian, which undergo a more global rearrangement.
A relation $mathcal{M}_{mathrm{SHS}tomathrm{LJ}}$ between the set of non-isomorphic sticky hard sphere clusters $mathcal{M}_mathrm{SHS}$ and the sets of local energy minima $mathcal{M}_{LJ}$ of the $(m,n)$-Lennard-Jones potential $V^mathrm{LJ}_{mn}(r
The coupling-parameter method, whereby an extra particle is progressively coupled to the rest of the particles, is applied to the sticky-hard-sphere fluid to obtain its equation of state in the so-called chemical-potential route ($mu$ route). As a co
Sticky hard spheres, i.e., hard particles decorated with a short-ranged attractive interaction potential, constitute a relatively simple model with highly non-trivial glassy dynamics. The mode-coupling theory of the glass transition (MCT) offers a qu
The solid-solid coexistence of a polydisperse hard sphere system is studied by using the Monte Carlo simulation. The results show that for large enough polydispersity the solid-solid coexistence state is more stable than the single-phase solid. The t
An approach to obtain the structural properties of additive binary hard-sphere mixtures is presented. Such an approach, which is a nontrivial generalization of the one recently used for monocomponent hard-sphere fluids [S. Pieprzyk, A. C. Branka, and