ﻻ يوجد ملخص باللغة العربية
We report on numerical procedures for, and preliminary results on the search for, tunnelling centres in Lennard-Jones clusters, seen as simple model systems of glasses. Several of the double-well potentials identified are good candidates to give rise to two-level systems. The role of boundary effects, and the application of the semiclassical WKB approximation in multidimensional spaces for the calculation of the ground state splitting are discussed.
We use molecular dynamics (MD) to simulate an unstable homogeneous mixture of binary fluids (AB), confined in a slit pore of width $D$. The pore walls are assumed to be flat and structureless, and attract one component of the mixture (A) with the sam
A relation $mathcal{M}_{mathrm{SHS}tomathrm{LJ}}$ between the set of non-isomorphic sticky hard sphere clusters $mathcal{M}_mathrm{SHS}$ and the sets of local energy minima $mathcal{M}_{LJ}$ of the $(m,n)$-Lennard-Jones potential $V^mathrm{LJ}_{mn}(r
We develop an efficient numerical algorithm for the identification of a large number of saddle points of the potential energy function of Lennard- Jones clusters. Knowledge of the saddle points allows us to find many thousand adjacent minima of clust
The definitions of breaks and clusters in a one-dimensional chain in equilibrium are discussed. Analytical expressions are obtained for the expected cluster length, $langle K rangle$, as a function of temperature and pressure in a one-dimensional Len
This paper studies physical aging by computer simulations of a 2:1 Kob-Andersen binary Lennard-Jones mixture, a system that is less prone to crystallization than the standard 4:1 composition. Starting from thermal-equilibrium states, the time evoluti