ﻻ يوجد ملخص باللغة العربية
We study surface states of topological crystalline insulators and superconductors protected by inversion symmetry. These fall into the category of higher-order topological insulators and superconductors which possess surface states that propagate along one-dimensional curves (hinges) or are localized at some points (corners) on the surface. We show that the surface states of higher-order topological insulators and superconductors can be thought of as globally irremovable topological defects and provide a complete classification of these inversion-protected phases in any spatial dimension for the ten symmetry classes by means of a layer construction. Furthermore, we discuss possible physical realizations of such states starting with a time-reversal invariant topological insulator (class AII) in three dimensions or a time-reversal invariant topological superconductor (class DIII) in two or three dimensions. The former can be used to build a three-dimensional second-order topological insulator which exhibits one-dimensional chiral or helical modes propagating along opposite edges, whereas the latter enables the construction of three-dimensional third-order or two-dimensional second-order topological superconductors hosting Majorana zero modes localized to two opposite corners. Being protected by inversion, such states are not pinned to a specific pair of edges or corners thus offering the possibility of controlling their location by applying inversion-symmetric perturbations such as magnetic field.
Three-dimensional topological (crystalline) insulators are materials with an insulating bulk, but conducting surface states which are topologically protected by time-reversal (or spatial) symmetries. Here, we extend the notion of three-dimensional to
Second-order topological insulators and superconductors have a gapped excitation spectrum in bulk and along boundaries, but protected zero modes at corners of a two-dimensional crystal or protected gapless modes at hinges of a three-dimensional cryst
Pursuing topological phase and matter in a variety of systems is one central issue in current physical sciences and engineering. Motivated by the recent experimental observation of corner states in acoustic and photonic structures, we theoretically s
We study disorder effects in a two-dimensional system with chiral symmetry and find that disorder can induce a quadrupole topological insulating phase (a higher-order topological phase with quadrupole moments) from a topologically trivial phase. Thei
We identify four types of higher-order topological semimetals or nodal superconductors (HOTS), hosting (i) flat zero-energy Fermi arcs at crystal hinges, (ii) flat zero-energy hinge arcs coexisting with surface Dirac cones, (iii) chiral or helical hi